The work done on the box by the applied force is zero.
The work done by the force of gravity is 75.95 J
The work done on the box by the normal force is 75.95 J.
<h3>The given parameters:</h3>
- Mass of the box, m = 3.1 kg
- Distance moved by the box, d = 2.5 m
- Coefficient of friction, = 0.35
- Inclination of the force, θ = 30⁰
<h3>What is work - done?</h3>
- Work is said to be done when the applied force moves an object to a certain distance
The work done on the box by the applied force is calculated as;

where;
a is the acceleration of the box
The acceleration of the box is zero since the box moved at a constant speed.

The work done by the force of gravity is calculated as follows;

The work done on the box by the normal force is calculated as follows;

Learn more about work done here: brainly.com/question/8119756
Answer:
x = 50 N
Explanation:
Given that we have a net force, a mass, and acceleration, we can use the fundamental formula for force found in newton's second law which is F = m × a.
Given a mass of 150 kg, and an acceleration 3.0m/s². We can substitute these two values in our formula to calculate the magnitude of these forces or it's net force to identify the unknown force acting on our known force for this situation to work.
_______
F (Net force) = F2 (Second force which we are given) - F1 (First force) = m × a
m (mass which we are given) = 150 kg
a (acceleration which we are given) = 3.0m/s
________
So F = m × a → F2 - F1 = m × a →
500 - F1 = 150 × 3.0 → 500 - F1 = 450 →
-F1 = -50 → F1 = 50
The density of the body and the height or the depth of the body since the formula of liquid pressure is density x height gravity
Answer:
A factor of 2*4 = 8
Explanation:
F_g = (G*m1*m2)/r^2
where m1 and m2 are the two masses, G is Newton's gravitational constant, and r is the distance between the center of mass of the two objects.
So, if you double m1 and quadruple m2:
m1' = 2*m1
m2' = 4*m2
Then F_g' = (G*m1'*m2')/r^2 = (G*2*m1*4*m2)/r^2 = 8*(G*m1*m2)/r^2 = 8*F_g
Answer:
no because the car is in the rest so this not a acceleration