Answer:
Kp = \frac{P(NH_{3}) ^{4} P(O_{2}) ^{5}}{P(NO) ^{4} P(H_{2}O)^{6}}
Explanation:
First, we have to write the balanced chemical equation for the reaction. Nitrogen monoxide (NO) reacts with water (H₂O) to give ammonia (NH₃) and oxygen (O₂), according to the following:
NO(g) + H₂O(g) → NH₃(g) + O₂(g)
To balance the equation, we add the stoichiometric coefficients (4 for NH₃ and NO to balance N atoms, then 6 for H₂O to balance H atoms and then 5 for O₂ to balance O atoms):
4 NO(g) + 6 H₂O(g) → 4 NH₃(g) + 5 O₂(g)
All reactants and products are in the gaseous phase, so the equilibrium constant is expressed in terms of partial pressures (P) and is denoted as Kp. The Kp is expressed as the product of the reaction products (NH₃ and O₃) raised by their stoichiometric coefficients (4 and 5, respectively) divided into the product of the reaction reagents (NO and H₂O) raised by their stoichiometric coefficients (4 and 6, respectively). So, the pressure equilibrium constant expression is written as follows:
There are 4 lone pairs of electrons present in the carbon dioxide molecule
<h2>
Hello!</h2>
The answer is:
The new temperature will be equal to 4 K.
<h2>
Why?</h2>
We are given the volume, the first temperature and the new volume after the gas is compressed. To calculate the new temperature after the gas was compressed, we need to use Charles's Law.
Charles's Law establishes a relationship between the volume and the temperature at a gas while its pressure is constant.
Now, to calculate the new temperature we need to assume that the pressure is kept constant, otherwise, the problem would not have a solution.
From Charle's Law, we have:
So, we are given the following information:
Then, isolating the new temperature and substituting the given information, we have:
Hence, the new temperature will be equal to 4 K.
Have a nice day!
Answer:
18.33 ×10²³ atoms
Explanation:
Given data:
Molar mass of sulfuric acid = 98.1 g/mol
Mass of sulfuric acid = 75.0 g
Number of of oxygen atom present = ?
Solution:
Number of moles of sulfuric acid:
Number of moles = mass/molar mass
Number of moles = 75.0 g/ 98.1 g/mol
Number of moles =0.761 mol
one mole of sulfuric acid contain four mole of oxygen atom.
0.761 mol × 4 = 3.044 mol
1 mole = 6.022×10²³ atoms of oxygen
3.044 mol × 6.022×10²³ atoms of oxygen / 1mol
18.33 ×10²³ atoms
Answer:
Inside the nucleus, the attractive strong nuclear force between protons outweighs the repulsive electromagnetic force and keeps the nucleus stable. Outside the nucleus, the electromagnetic force is stronger and protons repel each other.
Explanation: