he mass defect of the helium nucleus ⁴He₂ is 0.030377 u
Further explanation
Mass defect means the difference between the mass of particles forming an atom with an atomic mass.
Δm = mass defect ( u )
mp = mass of proton ( u )
me = mass of electron ( u )
mn = mass of neutron ( u )
M = atomic mass ( u )
A = mass number
Z = atomic number
Let us now tackle the problem !
Given :
Unknown :
Δm = ?
Solution :
Learn more
Rutherford’s major achievements : brainly.com/question/1552732
Unit of radius of an atom : brainly.com/question/1968819
Fusion : brainly.com/question/11395223
Answer details
Grade: College
Subject: Physics
Chapter: Nuclear Physics
Keywords: Mass , Defect , Nucleon , Number , Atomic , Proton , Electron , Neutron
Answer:
<em>C. The electron-withdrawing fluorine atoms pull electron density from the oxygen in trifluoroacetate. The negative charge is more stabilized in trifluoroacetate by this effect.</em>
<em></em>
Explanation:
<em>The structures of trifluoroacetate and acetic acid are both shown in the image attached.</em>
<em>The trifluoroacetate anion (CF3CO2-), just like the acetate anion has in the middle, two oxygen atoms.</em>
<em>However, in the trifluoroacetate anion, there are also three electronegative fluorine atoms attached to the nearby carbon atom attached to the carbonyl, and these pull some electron density through the sigma bonding network away from the oxygen atoms, thereby spreading out the negative charge further. This effect, called the "inductive effect" stabilizes the anion formed,the trifouoroacetate anion is thus more stabilized than the acetate anion.</em>
<em>Hence, trifluoroacetic acid is a stronger acid than acetic acid, having a pKa of -0.18.</em>
<em></em>
<u><em>Hope this helps!</em></u>
<u><em>Please mark brainliest!</em></u>
Answer:
Oxygen is a colorless, odorless, tasteless gas. It changes from a gas to a liquid at a temperature of -182.96°C (-297.33°F). The liquid formed has a slightly bluish color to it. Liquid oxygen can then be solidified or frozen at a temperature of -218.4°C (-361.2°F).
Answer:
124225.91 g of Na₃PO₄
Explanation:
From the question given above, the following data were obtained:
Number of atoms of Na₃PO₄ = 4.56×10²⁶ atoms
Mass of Na₃PO₄ =?
From Avogadro's hypothesis,
6.02×10²³ atoms = 1 mole of Na₃PO₄
Next, we shall determine the mass of 1 mole of Na₃PO₄. This can be obtained as follow:
1 mole of Na₃PO₄ = (23×3) + 31 + (16×4)
= 69 + 31 + 64
= 164 g
Thus,
6.02×10²³ atoms = 164 g of Na₃PO₄
Finally, we shall determine the mass of Na₃PO₄ that contains 4.56×10²⁶ atoms. This can be obtained as follow:
6.02×10²³ atoms = 164 g of Na₃PO₄
Therefore,
4.56×10²⁶ atoms = (4.56×10²⁶ × 164)/6.02×10²³
4.56×10²⁶ atoms = 124225.91 g of Na₃PO₄
Therefore, 124225.91 g of Na₃PO₄ contains 4.56×10²⁶ atoms