30
Hope you do well on the test and hope this helps!
Given
Weight of the block A, Wa = 20 lb, weight of block B Wb = 50 lb. Applied
force to block A, P = 6lb, coefficient of static friction µs = 0.4, coefficient
of kinetic friction µk = 0.3. If a force P
is applied to the body, no relative motion will take place until the applied
force is equal to the force of friction Ff, which is acting opposite to the
direction of motion. Magnitude of static force of friction between block A and
block B, Fs = µsN, where N is
reaction force acting on block A. Now, resolve the forces Fx = max. P = (mA +
mB)a,
6 = (20 / 32.2 + 50 / 32.2)a
2.173a = 6
A = 2.76 ft/s^2
To check slipping occurs between block A and block B, consider block A:
P – Ff = mAaA
6 – Ff = 1.71
Ff = 4.29 lb
And also,
N = wA. We know static friction,
Fs = µsN
Fs = 0.4 x 20
Fs = 8lb
Frictional force is less than static friction. Ff < Fs
<span>Therefors, acceleration of block A, aA = 2.76 ft/s^2, acceleration of
block B aB = 2.76 ft/s^2</span>
The area of a square is given by:
A = s²
A is the square's area
s is the length of one of the square's sides
Let us take the derivative of both sides of the equation with respect to time t in order to determine a formula for finding the rate of change of the square's area over time:
d[A]/dt = d[s²]/dt
The chain rule says to take the derivative of s² with respect to s then multiply the result by ds/dt
dA/dt = 2s(ds/dt)
A) Given values:
s = 14m
ds/dt = 3m/s
Plug in these values and solve for dA/dt:
dA/dt = 2(14)(3)
dA/dt = 84m²/s
B) Given values:
s = 25m
ds/dt = 3m/s
Plug in these values and solve for dA/dt:
dA/dt = 2(25)(3)
dA/dt = 150m²/s
Answer:
A vector is a quantity that has both magnitude and direction .
I don't think it has a unity