Answer: 18.65L
Explanation:
Given that,
Original volume of oxygen (V1) = 30.0L
Original temperature of oxygen (T1) = 200°C
[Convert temperature in Celsius to Kelvin by adding 273.
So, (200°C + 273 = 473K)]
New volume of oxygen V2 = ?
New temperature of oxygen T2 = 1°C
(1°C + 273 = 274K)
Since volume and temperature are given while pressure is held constant, apply the formula for Charle's law
V1/T1 = V2/T2
30.0L/473K = V2/294K
To get the value of V2, cross multiply
30.0L x 294K = 473K x V2
8820L•K = 473K•V2
Divide both sides by 473K
8820L•K / 473K = 473K•V2/473K
18.65L = V2
Thus, the new volume of oxygen is 18.65 liters.
I’m pretty sure it would be D.
Answer:
Inverse proportion occurs when one value increases and the other decreases. For example, more workers on a job would reduce the time to complete the task. They are inversely proportional.
Lithium metal reacts with nitrogen gas to form lithium nitride the balanced chemical equation will be 6Li + N₂ → 2Li₃N.
<h3>What is a balanced chemical reaction?</h3>
In a balanced chemical reaction, the number of moles that are present at the side of the reactant must be always equal to the side of product formation this is known as a balanced chemical equation.
The balanced chemical reaction will be 6Li + N₂ → 2Li₃N.
Here 6 moles of lithium is reacting with one nitrogen but as it is in gaseous state it is N₂ after reacting with lithium it will give two moles
Therefore, balanced equation will be 6Li + N₂ → 2Li₃N
Learn more about balanced chemical reaction, here :
brainly.com/question/15178192
#SPJ4
Answer: Object B will heat up more.
Explanation:
The formula for specific heat is as follows.
Q = 
Where,
Q = heat provided
m = mass
C = specific heat
= change in temperature
Now, both the objects have same mass and equal amount of heat is applied.
According to the formula, the equation will be as follows.
= 
= 
Cancel m from both sides, as mass is same. Therefore,
= 
Cancel out the initial temperature and put the values of specific heat, then the equation will be as follows.
= 
Therefore, from the above equation it can be concluded that the object with low specific heat will heat up more as its specific heat will be inversely proportional to its final temperature.
Hence, object B will heat up more.