<span>Water molecules have a lower
boiling temperature than oxygen molecules, so at room temperature they
exist as a liquid rather than a gas.
hope it helps
</span>
Answer:
N=+2
O=-2
Explanation:
The compound NO is electrically neutral.
Lets assign the oxidation number of nitrogen to be N. The oxidation number of oxygen (-2) is then used as a reference.
For the compound to have a zero charge, sum of the oxidation numbers equals zero.
N+ (-2)=0
N=+2
O=-2
<span>The best choice is hypochlorous acid nitrous acid (HNO2) because it has the nearest value of pK to the desired pH.
pKa of </span>nitrous acid<span> is 3.34
If we know pKa and pH values, we can calculate the required ratio of conjugate base (NO2⁻) to acid (HNO2) from the following equation:
pH=pKa + log(conc. of base)/( conc. of acid)
</span><span>3.19=3.34 + log c(NO2⁻)/c(HNO2)
</span><span>3.19 - 3.34 = log c(NO2⁻)/c(HNO2)
-0.15 = log c(NO2⁻)/c(HNO2)
c(NO2⁻)/c(HNO2) = 10⁰¹⁵ = 1.41
</span>
Answer:
60.9 Kelvin
Explanation: First, write out everything that you know. You are tring to find the temperature, so the temperature will be represented by x.
Pressure (P)= 4.5 atm
Volume (V)= 3L
Number of Moles (n)= ?
Gas Consant (R)= 0.0821, if the pressure is in atm, that means r is 0.0821
Temperature (T)= x
We don't have all the information we need to plug the values into the equation. We still need to know how many moles 55.0 grans of neon is.
Ne in Grams= 55
Atomic Mass of Ne= 20.1797
55/20.1797= 2.7
moles= 2.7
Now that we have all the information we need, plug everying into the equation. In case you don't know, the Ideal Gas Law Equation is PV= nRT.
(4.5)(3) = (2.7)(0.821)x
x= 60.9
Now you have your temperature! It is 60.9 in Kelvin.
Answer:
The answer to your question is given below.
Explanation:
Potassium (K) has 19 electrons with electronic configuration of 2, 8, 8, 1.
Fluorine (F) has 9 electrons with electronic configuration of 2, 7.
Fluorine needs 1 electron to complete it's octet configuration.
Hence, potassium (K), will lose 1 electron to fluorine (F) to form potassium ion (K+) with electronic configuration of 2, 8, 8. The fluorine atom (F) will receive the 1 electron from potassium to form the fluoride ion (F-) with electronic configuration of 2, 8.
**** Please see attached photo for further details.