Answer:
1425 mmHg.
Explanation:
The following data were obtained from the question:
Initial volume (V1) = 1.5 L
Initial pressure (P1) = 1 atm
Final volume (V2) = 0.8 L
Final pressure (P2) =?
Next, we shall determine the final pressure of the gas by using the Boyle's law equation as follow:
P1V1 = P2V2
1 × 1.5 = P2 × 0.8
1.5 = P2 × 0.8
Divide both side by 0.8
P2 = 1.5/0.8
P2 = 1.875 atm
Finally, we shall convert 1.875 atm to mmHg.
This can be obtained as follow:
1 atm = 760 mmHg
Therefore,
1.875 atm = 1.875 × 760 = 1425 mmHg.
Therefore, the new pressure of the gas is 1425 mmHg.
Answer:
One: <u>Selenium</u> is Paramagnetic
Explanation:
Those compounds which have unpaired electrons are attracted towards magnet. This property is called as paramagnetism. Lets see why remaining are not paramagnetic.
Electronic configuration of Scandium;
Sc = 21 = 1s², 2s², 2p⁶, 3s², 3p⁶, 4s², 3d¹
Sc³⁺ = 1s², 2s², 2p⁶, 3s², 3p⁶
Hence in Sc³⁺ there is no unpaired electron.
Electronic configuration of Bromine;
Br = 35 = 1s², 2s², 2p⁶, 3s², 3p⁶, 4s², 3d¹⁰, 4p⁵
Br⁻ = 1s², 2s², 2p⁶, 3s², 3p⁶, 4s², 3d¹⁰, 4p⁶
Hence in Br⁻ there is no unpaired electron.
Electronic configuration of Magnesium;
Mg = 12 = 1s², 2s², 2p⁶, 3s²
Mg²⁺ = 1s², 2s², 2p⁶
Hence in Mg²⁺ there is no unpaired electron.
Electronic configuration of selenium;
Se = 34 = 1s², 2s², 2p⁶, 3s², 3p⁶, 4s², 3d¹⁰, 4p⁴
Or,
Se = 34 = 1s², 2s², 2p⁶, 3s², 3p⁶, 4s², 3d¹⁰, 4px², 4py¹, 4pz¹
Hence in Se there are two unpaired electrons hence it is paramagnetic in nature.
Answer:
The structures shown by dots and lines to give the exact number of electrons in the outer most shell is explained by Lewis Structures.
Explanation:
Lewis structures are those structures in which the diagram is shown using the electron representation. They are easy to understand as the diagram completely depicts where the electrons are shared and where they are transferred. The diagram also explains where there is a single bond and where there is a di covalent bond or tri covalent bond explaining where the single , double or triple electron pair is shared. The electrons are shown by dots or lines.
For example CCl₄ can be shown as follows
..
.. Cl..
.. ..
..Cl..----------C----------..Cl..
..
.. Cl..
The picture shows that each chlorine has six electrons in its outer shell and then a pair of electron is shared with carbon forming a single covalent bond.
Similarly methane CH4 can also be shown.
The hydrogen has one electron and it shares an electron from carbon stabilising itself forming methane.
I think B or D because an eye obviously doesn't have a lense, mirror..maybe sorry for not giving u straight forward response
Answer:
2,14 g / ml
Explanation:
Sabemos que el volumen de una sustancia es igual al cambio de volumen del agua cuando el objeto en cuestión se sumerge en el agua.
Dado que el volumen original del agua = 50 ml
Volumen de agua después de sumergir el objeto = 120 ml
Masa del objeto = 150 g
Ahora,
Densidad = masa / volumen
Densidad = 150g / 120-50 ml
Densidad = 150/70 ml
Densidad = 2,14 g / ml