Answer:
- <u><em>It will be less than 26 °C as water has a relatively higher specific heat than sand.</em></u>
Explanation:
The <em>specific heat </em>of a substance is the amount of heat energy absorbed by one unit of mass of the substance when its temperature increases one unit.
From that, you can derive the equation for the specific heat of a substance:
- specific heat = heat / (mass × ΔT)
Thus, assuming that all the heat provided by the lamp to both samples is the same and, as given, the amount (mass) of both samples is also the same, you have that the specific heat of the samples will be:
- specific heat = constant / ΔT
So, specific heat and ΔT are inversely related.
It is known that water has a higher specific heat than sand (that is why the sand on the shore of a beach is, during the day, hotter than the water and your feet get burned when you walk on a sandy beach on a sunny day).
Then, since the specific heat of water is greater than the specific heat of sand, the increase of temperature of water will be lower and, consequently, water will reach a lower final temperature than sand, when equal amounts of water and sand are heated as described in the experiment. This is the second choice: the final temperature of water is less than 26°C as water has a relatively higher specific heat than water.
The number of atoms of each element :
C : 1 atom
H : 3 atoms
Br = 1 atom
<h3>Further explanation</h3>
Given
Bromomethane-CH₃Br
Required
The number of atoms
Solution
The empirical formula is the smallest comparison of atoms of compound forming elements.
A molecular formula is a formula that shows the number of atomic elements that make up a compound.
The number of atoms in a compound is generally indicated as a subscript after the atom
C : 1 atom
H : 3 atoms
Br = 1 atom
Total 5 atoms
Answer:
The equilibrium partial pressure of O2 is 0.545 atm
Explanation:
Step 1: Data given
Partial pressure of SO2 = 0.409 atm
Partial pressure of O2 = 0.601 atm
At equilibrium, the partial pressure of SO2 was 0.297 atm.
Step 2: The balanced equation
2SO2 + O2 ⇆ 2SO3
Step 3: The initial pressure
pSO2 = 0.409 atm
pO2 = 0.601 atm
pSO3 = 0 atm
Step 4: Calculate the pressure at the equilibrium
pSO2 = 0.409 - 2X atm
pO2 = 0.601 - X atm
pSO3 = 2X
pSO2 = 0.409 - 2X atm = 0.297
X = 0.056 atm
pO2 = 0.601 - 0.056 = 0.545 atm
pSO3 = 2*0.056 = 0.112 atm
Step 5: Calculate Kp
Kp = (pSO3)²/((pO2)*(pSO2)²)
Kp = (0.112²) / (0.545 * 0.297²)
Kp = 0.261
The equilibrium partial pressure of O2 is 0.545 atm
Answer:
11.9 g of nitrogen monoxide
Explanation:
We'll begin by calculating the number of mole in 6.75 g of NH₃. This can be obtained as follow:
Mass of NH₃ = 6.75 g
Molar mass of NH₃ = 14 + (3×1)
= 14 + 3
= 17 g/mol
Mole of NH₃ =?
Mole = mass /molar mass
Mole of NH₃ = 6.75 / 17
Mole of NH₃ = 0.397 mole
Next, we shall determine the number of mole of NO produced by the reaction of 0.397 mole of NH₃. This can be obtained as follow:
4NH₃ + 5O₂ —> 4NO + 6H₂O
From the balanced equation above,
4 moles of NH₃ reacted to produce 4 moles of NO.
Therefore, 0.397 mole of NH₃ will also react to produce 0.397 mole of NO.
Finally, we shall determine the mass of 0.397 mole of NO. This can be obtained as follow:
Mole of NO = 0.397 mole
Molar mass of NO = 14 + 16 = 30 g/mol
Mass of NO =?
Mass = mole × molar mass
Mass of NO = 0.397 × 30
Mass of NO = 11.9 g
Thus, the mass of NO produced is 11.9 g