Answer:
Explained
Explanation:
A) The total energy of the system is defined by the energy at maximum amplitude, which we'll call A. At that point, the energy of the system is
E = 1/2×m×A^2;
since energy is conserved, this is also the total amount of energy that the system ever has.
So at x=1/2A,
the potential energy of the system is 1/8×m×A^2
which is one-fourth of the system's total energy. Therefore, the remaining three-fourths is kinetic.
B) (i) Doubling the maximum amplitude will quadruple the total energy:

(ii) Doubling the maximum amplitude will double the maximum velocity

(iii) Doubling the maximum amplitude will double the maximum acceleration: m×a = -k(2A)
(iv) Doubling the maximum amplitude leaves the period unchanged:
(neither m nor k has changed).
Answer:
150N
Explanation:
To find the force applied remember that force equals to Mass multiply by the Acceleration.
F=Ma
=30*5
=150N
Answer:
6.69 m/s
4.483 m
1.42s
Explanation:
Given that:
Initial Velocity, u = 0
Final velocity, v =?
Acceleration, a = 35m/s²
1.) using the relation :
v² = u² + 2as
v² = 0 + 2(35) * 64*10^-2m
v² = 70 * 0.64
v = sqrt(44.8)
v = 6.693
v = 6.69 m/s
B.) height from the ground, h0 = 2.2
How high ball went , h:
Using :
v² = u² + 2as
Upward motion, g = - ve
0 = 6.69² + 2(-9.8)*(h - 2.2)
0= 6.69² - 19.6(h - 2.2)
44.7561 + 43.12 - 19.6h = 0
19.6h = 44.7561 - 43.12
h = 87.8761 / 19.6
h = 4.483 m
C.)
vt - 0.5gt² = h - h0
6.69t - 0.5(9.8)t²
6.69t - 4.9t² = 1.83 - 2.2
-4.9t² + 6.69t + 0.37 = 0
Using the quadratic equation solver :
Taking the positive root:
1.4185 = 1.42s