Answer:
Explanation:
For lens A
object distance u = - 13.1 cm , focal length f = 6.19 cm
From lens formula
1/v - 1/u = 1/f
1 / v + 1/13.1 = 1/6.19
1/v = 1/6.19 - 1/13.1
= .16155 - .07633
= .08522
v = 11.7 3 cm
For lens B
object distance u = - ( 55.7 - 11.73) = - 43.97 cm , focal length f = 27.9 cm
From lens formula
1/v - 1/u = 1/f
1 / v + 1/43.97 = 1/27.9
1/v = 1/27.9 - 1/43.97
= .03584 - .022742
= .013098
v = 76.35 cm
Image will be formed 76.35 cm behind lens B .
magnification of lens system
= m₁ x m₂ , m₁ is magnification by lens A and m₂ is magnification by lens B
= (11.73 / 13.1) x (76.35 / 43.97)
= .8954 x 1.73
= 1.5547
size of image = total magnification x size of object
= 1.5547 x 6.47
= 10 cm approx. The first image will be real and inverted and second image will be erect with respect to object.
Yes it would be the same your weight would change:)
Answer:
They're going to come home as soon as the movie is over.
Due to its polarity and hydrogen bonding water can absorb heat without a significant temperature change.. The high specific heat of water helps regulate the rate at which air changes temperature, which is why the temperature change between seasons is gradual instead of sudden, especially near the oceans.
Answer:
a) fem = - 2.1514 10⁻⁴ V, b) I = - 64.0 10⁻³ A, c) P = 1.38 10⁻⁶ W
Explanation:
This exercise is about Faraday's law
fem = 
where the magnetic flux is
Ф = B x A
the bold are vectors
A = π r²
we assume that the angle between the magnetic field and the normal to the area is zero
fem = - B π 2r dr/dt = - 2π B r v
linear and angular velocity are related
v = w r
w = 2π f
v = 2π f r
we substitute
fem = - 2π B r (2π f r)
fem = -4π² B f r²
For the magnetic field of Jupiter we use the equatorial field B = 428 10⁻⁶T
we reduce the magnitudes to the SI system
f = 2 rev / s (2π rad / 1 rev) = 4π Hz
we calculate
fem = - 4π² 428 10⁻⁶ 4π 0.10²
fem = - 16π³ 428 10⁻⁶ 0.010
fem = - 2.1514 10⁻⁴ V
for the current let's use Ohm's law
V = I R
I = V / R
I = -2.1514 10⁻⁴ / 0.00336
I = - 64.0 10⁻³ A
Electric power is
P = V I
P = 2.1514 10⁻⁴ 64.0 10⁻³
P = 1.38 10⁻⁶ W