The force applied by the competitor is littler than the heaviness of the barbell. At the point when the barbell quickens upward, the power applied by the competitor is more prominent than the heaviness of the barbell. When it decelerates upward, the power applied by the competitor is littler than the heaviness of the barbell.
Answer:
A) 138.8g
B)73.97 cm/s
Explanation:
K = 15.5 Kn/m
A = 7 cm
N = 37 oscillations
tn = 20 seconds
A) In harmonic motion, we know that;
ω² = k/m and m = k/ω²
Also, angular frequency (ω) = 2π/T
Now, T is the time it takes to complete one oscillation.
So from the question, we can calculate T as;
T = 22/37.
Thus ;
ω = 2π/(22/37) = 10.5672
So,mass of ball (m) = k/ω² = 15.5/10.5672² = 0.1388kg or 138.8g
B) In simple harmonic motion, velocity is given as;
v(t) = vmax Sin (ωt + Φ)
It is from the derivative of;
v(t) = -Aω Sin (ωt + Φ)
So comparing the two equations of v(t), we can see that ;
vmax = Aω
Vmax = 7 x 10.5672 = 73.97 cm/s
Answer:
Power = 50204 [watts]
Explanation:
We know that the power is defined by the following expression:
Power = Work/time
where:
Power [watts]
time [seconds]
The work done will be the following:
Work = Force * distance [Joules]
Force[Newtons]
distance[meters]
Force = mass* gravity
Force=290 [kg]*9.81[m/s^2] =2844.9[N]
Work = 2844.9[N]*300[m] = 853470[J]
Therefore
Power = 853470 / 17 = 50204 [watts]
Answer:
a. 0.000002 m
b. 0.00000182 m
Explanation:
36 cm = 0.36 m
15 cm = 0.15 m
a) We can start by calculating the air-water pressure of the bucket submerged 20m below the water surface:

Suppose air is ideal gas, then if the temperature stays the same, the product of its pressure and volume stays the same

Where P1 = 1.105 Pa is the atmospheric pressure, V_1 is the air volume in the bucket on the suface:

As the pressure increases, the air inside the bucket shrinks. But the crossection area stays constant, so only h, the height of air, decreases:


b) If the temperatures changes, we can still reuse the ideal gas equation above:


The magnitude of the air drag is 784 N
Explanation:
An object falling down reaches the terminal velocity when the magnitude of the air drag acting on it becomes equal to the weight of the object. Mathematically, this condition can be written as:

where
is the magnitude of the air drag
m is the mass of the object
g is the acceleration of gravity
In this problem, we have
m = 80 kg is the mass of the airman
is the acceleration of gravity
Substituting into the formula, we find:

Learn more about forces here:
brainly.com/question/8459017
brainly.com/question/11292757
brainly.com/question/12978926
#LearnwithBrainly