Answer:
7.19 * 10^14J
Explanation:
Given that
Density of water Pwater= 1000kg/m3
R=2.1km = 2.1*10^3m
H= 2.3cm. = 2.3*10^-2m
Lv water= 2256 * 10^3J/kg
First, mass of water need to be calculated, using an imaginary cylinder
Density= Mass /Volume
Mass= Density* Volume
Volume of a cylinder= πR2h
Therefore mass= PπR2H
= 1000 * π * (2.1 *10^3)^2 * (2.3 * 10^-2)
= 3.18 *10^8
Heat Released Qv = mLV
= 3.18*10^8 * 2236*10^3
= 7.19 * 10^14J
Answer:
The solution is given in the picture attached below
Explanation:
Answer:
C
Explanation:
F=ma
given solution
v=12m/s a=v/t
s=6 sec =12m/s÷6sec
=2m/s^2 then we get acceleration now we will find the mass. first derive the the formula of mass by crisis cross then you will get this formula which is m=F/a
=36÷2
= 18
Answer:
41.3 m/s^2 option (e)
Explanation:
force, F = 6.81 N
mass, m = 165 g = 0.165 kg
Let a be the acceleration of the puck.
Use newtons' second law
Force = mass x acceleration
6.81 = 0.165 x a
a = 41.27 m/s^2
a = 41.3 m/s^2
Thus, the acceleration of the puck is 41.3 m/s^2.
Answer:
The square of the hypotenuse is equal to the sum of the squares of the other two lengths.
Explanation:
only one that made sense