Explanation:
We have,
The initial position of an object is zero.
The starting velocity is 3 m/s and the final velocity was 10 m/s.
The object moves with constant acceleration..
The area covered under the velocity-time graph gives displacement of the object. The correct option is "the area of the rectangle plus the area of the triangle under the line".
Answer:
-4*10⁴ units.
Explanation:
As the metal rod was initially neutral (which means that it has the same quantity of positive and negative charges), after being close to the charged sphere, as charge must be conserved, the total charge of the metal rod must still remain to be zero.
So, if due to the influence of the negative charge in the sphere, the half of the road closer to the sphere has a surplus charge of +4*10⁴ units, the charge on the half of the rod farther from the sphere must be the same in magnitude but of the opposite sign, i.e., -4*10⁴ units.
Answer:

Explanation:
It is given that,
Weight of the person on Earth, W = 818 N
Weight of a person is given by the following formula as :

g is the acceleration due to gravity on earth


m = 83.46 kg
The mass of an object is same everywhere. It does not depend on the location.
Let W' is the weight of the person on the surface of a nearby planet, W' = 5320 N
g' is the acceleration due to gravity on that planet. So,


So, the acceleration due to gravity on that planet is
. Hence, this is the required solution.
Answer:
By conservation of energy, it can climb up to a height equal to that it went down before. However, due to the friction in the machines, the total mechanical energy of the roller coaster will decrease. As a result, the first "hill" of many roller coasters are the highest, but the followings will have decreasing heights.
Explanation:
1. GPE - 40 * 2 * 10 = 800j