The electron configuration of lithium atom is:
![Li:[He]2s^1](https://tex.z-dn.net/?f=Li%3A%5BHe%5D2s%5E1)
The number "2" is the value of the principal quantum number "n". Letter "s" is associated with the value of secondary quantum number "l" and it is equal to zero. The value of "m" (or magnetic quantum number) is zero too. The quantum number set for the highest energy electron will be (2, 0, 0, 1/2).
<span>Electronegativity is the property of an element that measures the
ability of it to attract and form electron bonds. The trend in the periodic
table in terms of electronegativity decreases from right to left and from top
to bottom. In the case of period 4, the element with the highest electronegativity
is bromine. </span>
Molarity is moles divided by liters so do .732 divided by .975 liters.
Answer:
In a fossil fuel power plant the chemical energy stored in fossil fuels such as coal, fuel oil, natural gas or oil shale and oxygen of the air is converted successively into thermal energy, mechanical energy and, finally, electrical energy.
Answer : The correct option is, (b) +0.799 V
Solution :
The values of standard reduction electrode potential of the cell are:
![E^0_{[H^{+}/H_2]}=+0.00V](https://tex.z-dn.net/?f=E%5E0_%7B%5BH%5E%7B%2B%7D%2FH_2%5D%7D%3D%2B0.00V)
![E^0_{[Ag^{+}/Ag]}=+0.799V](https://tex.z-dn.net/?f=E%5E0_%7B%5BAg%5E%7B%2B%7D%2FAg%5D%7D%3D%2B0.799V)
From the cell representation we conclude that, the hydrogen (H) undergoes oxidation by loss of electrons and thus act as anode. Silver (Ag) undergoes reduction by gain of electrons and thus act as cathode.
The half reaction will be:
Reaction at anode (oxidation) :
Reaction at cathode (reduction) :
The balanced cell reaction will be,

Now we have to calculate the standard electrode potential of the cell.

![E^o_{cell}=E^o_{[Ag^{+}/Ag]}-E^o_{[H^{+}/H_2]}](https://tex.z-dn.net/?f=E%5Eo_%7Bcell%7D%3DE%5Eo_%7B%5BAg%5E%7B%2B%7D%2FAg%5D%7D-E%5Eo_%7B%5BH%5E%7B%2B%7D%2FH_2%5D%7D)

Therefore, the standard cell potential will be +0.799 V