Answer:
22.44°C will be the final temperature of the water.
Explanation:
Heat lost by tin will be equal to heat gained by the water

Mass of tin = 
Specific heat capacity of tin = 
Initial temperature of the tin = 
Final temperature =
=T

Mass of water= 
Specific heat capacity of water= 
Initial temperature of the water = 
Final temperature of water =
=T



On substituting all values:

we get, T = 22.44°C
22.44°C will be the final temperature of the water.
+molecule size +steepness of the concentration gradient +temperature + steepness of the electric gradient +steepness
Answer:
Wt. Avg. Atomic Weight => 63.35457 amu
Explanation:
Given Isotopic %Abundance fractional Wt Avg
At. Mass (amu) abundance contribution
Cu-63 62.93 69.09 0.6909 43.4783
Cu-65 64.9278 20.0668 0.200668 20.0668
Wt Average of all isotopes = ∑Wt Avg Contributions
= 43.4783 amu + 20.0668 amu = 63.35457 amu
Answer:
= 62.1 hours
Explanation:
Energy provide by the serving is 65 cal
= 65 cal × 4.184 Kj = 271.96 kJ
271.96 KJ = 271960 J
Energy required for 1minute of energy
= 73 x 1
= 73 J/min
So, 271960 joules will be required for 271960 heart beat
Minutes = 271960 / 73
= 3593.94 minutes
Time in hours = 3725.429 / 60
= 62.1 hours
Answer:
It kind of is logical so my answer is yes