Answer:
Lysine 63.
Explanation:
The coenzyme may be defined as the non protein part of an enzyme that plays an important role in the enzyme functioning. Any cation or small molecule like amino acids can acts as coenzyme.
Lipoamide is important coenzyme that plays an important role in the metabolic pathways by undergoes the decarboxylation reactions. The reduced lipoamide known as dihydrolipoamide is used for the covalent attachment at Lysine 63 residues.
Thus, the correct answer is option (D).
You can differentiate between ionic, covalent and molecular compounds by the fact that ionic compounds contain elements that include both a metal and a nonmetal. Molecular compounds contain both non metals covalently bonded to each other. While acids most often on their chemical formula start with the element of Hydrogen - H.
For Eg - sulphuric acid
H2SO4
hydrochloric acid - HCl.
Answer:
C. An electron has a high probability of being in certain regions.
Explanation:
In the electron cloud model, there are no electron-orbits around the nucleus but a cloud. This cloud has various densities with respect to distance from the nucleus. The most dense region of the cloud (which is the region close to the nucleus) is where electrons has the highest probability of existence.
The model explains that an electron a greater chance of being in the region closer to the nucleus. Thus, an electron has a high probability of being in certain region of the cloud about the central nucleus. And an electrostatic force exists between the nucleus and the electrons.
Answer: The pH will be 3.87
Explanation:
pH or pOH is the measure of acidity or alkalinity of a solution.
pH is calculated by taking negative logarithm of hydrogen ion concentration.
![pH=-\log [H^+]](https://tex.z-dn.net/?f=pH%3D-%5Clog%20%5BH%5E%2B%5D)

According to stoichiometry,
1 mole of
gives 1 mole of
Thus
moles of
gives =
moles of
Putting in the values:
![pH=-\log[0.000134]](https://tex.z-dn.net/?f=pH%3D-%5Clog%5B0.000134%5D)

Thus the pH will be 3.87
Answer:
V = 85.2
Explanation:
STP = 273K and 1 atm
Considering what we know about STP, we get the moles, temperature, and pressure. Using the ideal gas law we can find the volume (PV = nRT). Plug in our variables: (1 * V = 3.80 * R * 273). Since we are dealing with atm and not kPA or mmHg, we use the constant for atm (0.0821) which we use for R. (So.. now our equation is 1 * V = 3.80 * 0.0821 * 273). We now multiply the right side to get 85.17054. So... V = 85.2 considering sigificant figures (this is the part where I am the least sure of, since I havent done sig figs in a while)