1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Neko [114]
3 years ago
13

What is c divided by 22?

Mathematics
1 answer:
Allushta [10]3 years ago
3 0

Answer:

11

Step-by-step explanation:

looked it up because I have no Idea lol

You might be interested in
The vector (a) is a multiple of the vector (2i +3j) and (b) is a multiple of (2i+5j) The sum (a+b) is a multiple of the vector (
kow [346]

Answer:

\|a\| = 5\sqrt{13}.

\|b\| = 3\sqrt{29}.

Step-by-step explanation:

Let m,n, and k be scalars such that:

\displaystyle a = m\, (2\, \vec{i} + 3\, \vec{j}) = m\, \begin{bmatrix}2 \\ 3\end{bmatrix}.

\displaystyle b = n\, (2\, \vec{i} + 5\, \vec{j}) = n\, \begin{bmatrix}2 \\ 5\end{bmatrix}.

\displaystyle (a + b) = k\, (8\, \vec{i} + 15\, \vec{j}) = k\, \begin{bmatrix}8 \\ 15\end{bmatrix}.

The question states that \| a + b \| = 34. In other words:

k\, \sqrt{8^{2} + 15^{2}} = 34.

k^{2} \, (8^{2} + 15^{2}) = 34^{2}.

289\, k^{2} = 34^{2}.

Make use of the fact that 289 = 17^{2} whereas 34 = 2 \times 17.

\begin{aligned}17^{2}\, k^{2} &= 34^{2}\\ &= (2 \times 17)^{2} \\ &= 2^{2} \times 17^{2} \end{aligned}.

k^{2} = 2^{2}.

The question also states that the scalar multiple here is positive. Hence, k = 2.

Therefore:

\begin{aligned} (a + b) &= k\, (8\, \vec{i} + 15\, \vec{j}) \\ &= 2\, (8\, \vec{i} + 15\, \vec{j}) \\ &= 16\, \vec{i} + 30\, \vec{j}\\ &= \begin{bmatrix}16 \\ 30 \end{bmatrix}\end{aligned}.

(a + b) could also be expressed in terms of m and n:

\begin{aligned} a + b &= m\, (2\, \vec{i} + 3\, \vec{j}) + n\, (2\, \vec{i} + 5\, \vec{j}) \\ &= (2\, m + 2\, n) \, \vec{i} + (3\, m + 5\, n) \, \vec{j} \end{aligned}.

\begin{aligned} a + b &= m\, \begin{bmatrix}2\\ 3 \end{bmatrix} + n\, \begin{bmatrix} 2\\ 5 \end{bmatrix} \\ &= \begin{bmatrix}2\, m + 2\, n \\ 3\, m + 5\, n\end{bmatrix}\end{aligned}.

Equate the two expressions and solve for m and n:

\begin{cases}2\, m + 2\, n = 16 \\ 3\, m + 5\, n = 30\end{cases}.

\begin{cases}m = 5 \\ n = 3\end{cases}.

Hence:

\begin{aligned} \| a \| &= \| m\, (2\, \vec{i} + 3\, \vec{j})\| \\ &= m\, \| (2\, \vec{i} + 3\, \vec{j}) \| \\ &= 5\, \sqrt{2^{2} + 3^{2}} = 5 \sqrt{13}\end{aligned}.

\begin{aligned} \| b \| &= \| n\, (2\, \vec{i} + 5\, \vec{j})\| \\ &= n\, \| (2\, \vec{i} + 5\, \vec{j}) \| \\ &= 3\, \sqrt{2^{2} + 5^{2}} = 3 \sqrt{29}\end{aligned}.

6 0
3 years ago
Which number sentence has a difference of 5?<br> 8-(-3)<br> 0<br> -3-8<br> -3-(-8)<br> 3-(-8)
valina [46]

Answer:

The 4th one

Step-by-step explanation:

-3-(-8)=5

6 0
3 years ago
Which of the lines is perpendicular to the line shown in the graph
Nitella [24]

Answer:

The line passing through (-8, 10) and (-1, 4).

Step-by-step explanation:

Two lines are perpendicular if the product of their slopes is -1. The slope of the line in the picture is 7\over 6, so we should find a line with slope of -6\over 7.

Note that the slope of the line in the last option is -7\over 6.

4 0
3 years ago
Please help!!!!! It's urgent
Evgesh-ka [11]
       2b                     2a
----------------- +  -----------------
   (b+a)^2            (b^2 - a^2)

            2b                     2a
= ----------------- +  -------------------
      (b+a)(b+a)         (b+a)(b-a)

         2b(b - a) +  2a(b + a)
= ------------------------------------
           (b+a)(b+a)(b-a)


         2b^2 - 2ab  +  2ab + 2a^2
= ---------------------------------------
           (b+a)(b+a)(b-a)

         2b^2 + 2a^2
= ------------------------
        (b+a)(b+a)(b-a)

         2(b^2 + a^2)
= ------------------------
        (b+a)^2 (b-a)

Answer:

Numerator:        2(b^2 + a^2)
Denominator:    (b+a)^2 (b-a)
7 0
3 years ago
Can some one answer this plz ill give !100 POINTS!
Lorico [155]
Hello!

First of all let's find the perimeter (circumference) of the semi circles. We can combine them to make one circle with a diameter of 4 (as we can see the side length of one semi circle is 4 cm. We now plug it into the circumference equation (\pi=3.14).

4(3.14)=12.56

Now we add up the side lengths of the rectangle.

4+6+4+6=20

Now we add up the length of our circle and rectangle.

20+12.56=32.56

Therefore our answer is 32.56 cm.
----------------------------------------------------------

Now to find the area! If we combine the two semicircles, we get a circle with a diameter of four. This means that is has a radius of two. We use the equation below to find the area of the two circles.

A=\pir²

First we will square our radius.

2(2)=4

Now we multiply by pi.

4(3.14)=12.56

Now we need to find the area of the rectangle.

6(4)=24

Now we add.

24+12.56=36.56.

 
I hope this helps!

8 0
4 years ago
Read 2 more answers
Other questions:
  • You use 4 gallons of water on 30 plants in your garden. At that rate, how much water will it take to water 45 plants?
    8·2 answers
  • I need help with this problem
    9·2 answers
  • Please help me thank you
    12·1 answer
  • How to solve -6r(4r-5)-2(r-2) plz...
    15·1 answer
  • Suppose that circles A and B have a central angle measuring 40°. Additionally, circle A has a radius of 5 2 ft and the radius of
    7·1 answer
  • 123333333333333333333
    12·1 answer
  • Simplify.<br> 2 × (3-1) + 3<br> 007<br> 20<br> 7 8 a<br> 0 10<br> 011
    14·1 answer
  • 3 fewer than than a number ,p
    11·1 answer
  • PLEASE SHOW WORK
    10·1 answer
  • What are some ways ou can represent a proportional relationship?equations ,or graphs,or tables ,or can be all of them
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!