A solution (in this experiment solution of NaNO₃) freezes at a lower temperature than does the pure solvent (deionized water). The higher the
solute concentration (sodium nitrate), freezing point depression of the solution will be greater.
Equation describing the change in freezing point:
ΔT = Kf · b · i.
ΔT - temperature change from pure solvent to solution.
Kf - the molal freezing point depression constant.
b - molality (moles of solute per kilogram of solvent).
i - Van’t Hoff Factor.
First measure freezing point of pure solvent (deionized water). Than make solutions of NaNO₃ with different molality and measure separately their freezing points. Use equation to calculate Kf.
Increases the volume of water
Explanation:
Freezing of water causes the volume of water to increase by a whooping 4%. This is why the density of water is slightly different that of ice.
When ice freezes it expands and takes up more volume of space for the same mass given.
This is why bottles break when water in them is frozen.
This increase in volume is why ice floats on water. It makes it less dense.
learn more:
Density brainly.com/question/3764212
#learnwithBrainly
Answer: M = 22/ (i x28.948)
Explanation:
Pi = osmotic pressure = 22atm
T = Temperature = 353K
M = Molarity = ?
R = gas constant = 0.082atm.L/mol/K
i = van’t Hoff factor
Pi = iMRT
M= Pi /(iRT) = 22 / ( i x 0.082 x 353)
M = 22/ (i x28.948)
Water<span> can </span>dissolve salt<span> because the positive part of</span>water<span> molecules attracts the negative chloride ions and the negative part of </span>water<span> molecules attracts the positive sodium ions</span>
Yes. its a chemichal change.