The molar mass of a gas that moves 1.25 times as fast as CO2 is 28.16 g.
<h3>
Molar mass of the gas</h3>
The molar mass of the gas is determined by applying Graham's law of diffusion.
R₁√M₁ = R₂√M₂
R₁/R₂ = √M₂/√M₁
R₁/R₂ = √(M₂/M₁)
where;
- R₁ is rate of the CO2 gas
- M₁ is molar mass of CO2 gas
- R₂ is rate of the second gas
- M₂ is the molar mass of the second gas
R₁/1.25R₁ = √(M₂/44)
1/1.25 = √(M₂/44)
0.8 = √(M₂/44)
0.8² = M₂/44
M₂ = 0.8² x 44
M₂ = 28.16 g
Thus, the molar mass of a gas that moves 1.25 times as fast as CO2 is 28.16 g.
Learn more about molar mass here: brainly.com/question/21334167
#SPJ1
Answer:
B. is the correct answer. Plz mark as brainliest if helpful.
Explanation: Gold is not magnetic, so A. and B. are wrong
Answer:
6*10^-3
Hope it helps
Procedure in the attached file
Answer:
8:10
Explanation:
The coefficients of a balanced chemical equation give us the mole ratios. The coefficient of carbon dioxide here is 8 and water is 10.