The answer is:
the volume stays the same. it is the pressure that increases
Answer:
The five phases of matter. There are four natural states of matter: Solids, liquids, gases and plasma. The fifth state is the man-made Bose-Einstein condensates. In a solid, particles are packed tightly together so they don't move much.
Answer:- 1840 g.
Solution:- We have been given with 3.35 moles of and asked to calculate it's mass.
To convert the moles to grams we multiply the moles by the molar mass of the compound. Molar mass of the compound is the sum of atomic masses of all the atoms present in it.
molar mass of = atomic mass of Hg + 2(atomic mass of I) + 6(atomic mass of O)
= 200.59+2(126.90)+6(16.00)
= 200.59+253.80+96.00
= 550.39 gram per mol
Let's multiply the given moles by the molar mass:

= 1843.8 g
Since, there are three sig figs in the given moles of compound, we need to round the calculated my to three sig figs also. So, on rounding off to three sig figs the mass becomes 1840 g.
Answer:
The pressure inside the container is 6.7 atm
Explanation:
We have the ideal gas equation: P x V = n x R x T
whereas, P (pressure, atm), V (volume, L), n (mole, mol), R (ideal gas constant, 0.082), T (temperature, Kelvin)
Since the container is evacuated and then sealed, the volume of the body of gas is the volume of the container.
So we can calculate the pressure by
P = n x R x T / V
where as,
n = 41.1 g / 44 g/mol = 0.934 mol
Hence P = 0.934 x 0.082 x 298 / 3.4 L = 6.7 atm
Answer:
If temperature increases, as it does in most reactions, a chemical change is likely to be occurring. This is different from the physical temperature change. During a physical temperature change, one substance, such as water is being heated.
Explanation: