Answer: Most of the stars in the universe are main sequence stars — those converting hydrogen into helium via nuclear fusion. A main sequence star may have a mass between a third to eight times that of the sun and eventually burn through the hydrogen in its core. Over its life, the outward pressure of fusion has balanced against the inward pressure of gravity. Once the fusion stops, gravity takes the lead and compresses the star smaller and tighter.
Temperatures increase with the contraction, eventually reaching levels where helium is able to fuse into carbon. Depending on the mass of the star, the helium burning might be gradual or might begin with an explosive flash.
Answer:
bye have a neautiful time just kidding
So if you put a holo ball of paper in the water it sinks and as it sinks it gets smaller cuse pressure so it cuseus things to shrink cuse of pressure
The exothermic process is a process or reaction that involves a release of energy from the system to its surroundings in various forms usually through heat, light, electricity or sound. In the four given choices, when melting a copper, you try to immerse the metal in heaping coals of fire. The metal will absorb the thermal energy coming from the coal, thus, once you retrieve the metal back, light will be emitted from it as well as heat.
Therefore, the answer is B. MELTING OF COPPER
Mole ratio:
MgCl₂ + 2 KOH = Mg(OH)₂ + 2 KCl
2 moles KOH ---------------- 1 mole Mg(OH)₂
moles KOH ------------------- 4 moles Mg(OH₂)
moles KOH = 4 x 2 / 1
= 8 moles of KOH
molar mass KOH = 56 g/mol
mass of KOH = n x mm
mass of KOH = 8 x 56
= 448 g of KOH
hope this helps!