For this reaction to proceed, the following bond breaking should occur:
*one C-O bond* one H-Cl bond
After, the following bond formations should occur:*one C-Cl bond*one O-H bond
Now, add the bond energies for the respective bond energies which can be found in the attached picture. For bond formations, energy is negative. For bond breaking, energy is positive.
ΔHrxn = (1)(358) + (1)(431) + 1(-328) + 1(-463) =
<em> -2 kJ</em>
Answer:
two electrons
Explanation:
Calcium atoms will lose two electrons in order to achieve the noble gas configuration of argon.
Answer : The concentration of
at equilibrium is 0 M.
Solution : Given,
Concentration of
= 0.0200 M
Concentration of
= 1.00 M
The given equilibrium reaction is,
![Fe^{3+}(aq)+3C_2O_4^{2-}(aq)\rightleftharpoons [Fe(C_2O_4)_3]^{3-}(aq)](https://tex.z-dn.net/?f=Fe%5E%7B3%2B%7D%28aq%29%2B3C_2O_4%5E%7B2-%7D%28aq%29%5Crightleftharpoons%20%5BFe%28C_2O_4%29_3%5D%5E%7B3-%7D%28aq%29)
Initially conc. 0.02 1.00 0
At eqm. (0.02-x) (1.00-3x) x
The expression of
will be,
![K_c=\frac{[[Fe(C_2O_4)_3]^{3-}]}{[C_2O_4^{2-}]^3[Fe^{3+}]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5B%5BFe%28C_2O_4%29_3%5D%5E%7B3-%7D%5D%7D%7B%5BC_2O_4%5E%7B2-%7D%5D%5E3%5BFe%5E%7B3%2B%7D%5D%7D)

By solving the term, we get:

Concentration of
at equilibrium = 0.02 - x = 0.02 - 0.02 = 0 M
Therefore, the concentration of
at equilibrium is 0 M.
Answer:
The molarity of the solution is 0,31 M
Explanation:
We calculate the weight of 1 mol of NaCl from the atomic weights of each element of the periodic table. Then, we calculate the molarity, which is a concentration measure that indicates the moles of solute (in this case NaCl) in 1000ml of solution (1 liter)
Weight 1 mol NaCl= Weight Na + Weight Cl= 23 g + 35, 5 g= 58, 5 g
58, 5 g-----1 mol NaCl
13,1 g ---------x= (13,1 g x 1 mol NaCl)/58, 5 g= 0, 224 mol NaCl
727 ml solution------ 0, 224 mol NaCl
1000ml solution------x= (1000ml solutionx0, 224 mol NaCl)/727 ml solution
x=0,308 mol NaCl---> <em>The solution is 0,31 molar (0,31 M)</em>