An electron can be added to halogen atom to force a halide ion with 8 valence electrons
<h3>What is an atom?</h3>
An atom can be defined as the smallest part of an element which can take part in a chemical reaction.
However whenever, an electron is added to halogen atom to force a halide ion with 8 different valence electrons
So therefore; an electron can be added to halogen atom to force a halide ion with 8 valence electrons
Learn more about halogens:
brainly.com/question/18276987
#SPJ1
Yes because look in the book dh
To obtain the number of moles of electrons, we need to multiply both sides by 1/FE.
<h3>What is electrochemical cell?</h3>
The electrochemical cell is a cell in which energy is produced by chemical reactions which are spontaneous. We can obtain the free energy of an electrochemical cell using the equation; ΔG=-nFE
To make n the subject of the formula, we need to multiply both sides by 1/FE as follows;
.
Learn more about electrochemical cell: brainly.com/question/4592165
To calculate the actual heat, I'd use calorimetric to weigh a sample mass. I 'd calculate the mass of a material sample. At a specified temperature, I will heat the material. I should position the heated material inside a calorimeter for coffee cup containing an initially established mass of water. I 'd wait for the weather to stabilize and then measure the difference in weather. To assess the sum of energy consumed, I will use the increase in water temperatures. For measure real heat I will use the sum of energy per material, weight, and temperature shift.
-------------------------------
<em>Hope this helps!</em>
<em />
<u>Brainliest would be great!</u>
<u />
-------------------------------
<em><u>With all care,</u></em>
<em><u>07x12!</u></em>
Answer : the statement that is true about the atom is It is present in the second group of the periodic table.
Explanation :
The Lewis dot model shows the number of valence electrons present in the atom.
Since the given metal has 2 dots, it indicates that the metal atom must have 2 electrons in its outermost shell.
Therefore option 2 : It has two electrons in the innermost energy level, is wrong because it contains 2 electrons in the outermost energy level
Option 1 : It is most likely to form covalent bonds is also wrong because a metal atom always forms ionic bond
Option 3 : It requires six other atoms to form a stable compound, is also wrong as the metal can form a stable compound by donating its 2 electrons to a non metal.
On periodic table, representative elements are arranged in groups based on their valence electrons. Therefore by knowing the outermost electrons, we can predict the group in which the element can be categorized.
Since the given metal atom contains 2 electrons, it must be present is second group.
Therefore the statement that is true about the atom is It is present in the second group of the periodic table.