Yes they are stable because they follow octet rule but am not sure if they are exist separetly
Considering ideal gas:
PV= RTn
T= 25.2°C = 298.2 K
P1= 637 torr = 0.8382 atm
V1= 536 mL = 0.536 L
:. R=0.082 atm.L/K.mol
:. n= (P1V1)/(RT) = ((0.8382 atm) x (0.536 L))/
((0.082 atmL/Kmol) x (298.2K))
:. n= O.0184 mol
Then,
P2= 712 torr = 0.936842 atm
V2 = RTn/P2 = [(0.082atmL/
Kmol) x (298.2K) x (0.0184mol) ]/(0.936842atm)
:.V2 = 0.4796 L
OR
V2 = 479.6 ml
Answer:
E = 147000 J
Explanation:
Given that,
The mass of meteor, m = 50 kg
The altitude of the meteor, h = 300 m
We need to find the potential energy of the meteor. The formula for the potential energy is given by :

Put all the values,

So, the required potential energy is equal to 147000 J.
An exothermic reaction releases heat. An endothermic reaction absorbs heat. Burning gas releases heat so it would be exothermic. Acid and water react heating the beaker would be exothermic because it releases heat from the reaction. Hope this helps! ;)