To solve this problem,
we can use the Henderson-Hasselbalch Equation which relates the pH to the measure
of acidity pKa. The equation is given as:<span>
<span>pH = pKa + log ([base]/[acid]) ---> 1</span></span>
Where,
[base] = concentration
of C2H3O2
in molarity or moles
<span>[acid] = concentration of HC2H3O2 in molarity or moles</span>
For the sake of easy calculation, let us assume that:
[base] = 1
[acid] = x
<span>
Therefore using equation 1,
4.24 = 4.74 + log (1 / x)
<span>log (1 / x) = - 0.5
1 / x = 0.6065 </span></span>
x =
1.65<span>
The required ratio of C2H3O2 /HC2H3O2 <span>
is 1:1.65 or 3:5. </span></span>
Explanation:
The graphite anodes are suspended into the brine. During electrolysis, Cl ions are oxidized at the anode and chlorine gas goes out of the cell, while sodium ions are reduced at the mercury cathode forming sodium amalgam. ... Hydrogen gas is obtained as a by–product at the cathode.
Answer:
HCO₂
Explanation:
From the information given:
The mass of the elements are:
Carbon C = 26.7 g; Hydrogen H = 2.24 g Oxygen O = 71.1 g
To determine the empirical formula;
First thing is to find the numbers of moles of each atom.
For Carbon:

For Hydrogen:

For Oxygen:

Now; we use the smallest no of moles to divide the respective moles from above.
For carbon:

For Hydrogen:

For Oxygen:

Thus, the empirical formula is HCO₂
Answer:
Explanation:
diffusion has already occurred