Answer:
It is 20. g HF
Explanation:
H2 + F2 ==> 2HF ... balanced equation
Since the question is asking us to find the mass of product formed, we will want to first convert the molecules of H2 into moles of H2 (we could do this at the end of the calculations, but it's just as easy to do it now).
moles of H2 present (using Avogadro's number):
3.0x1023 molecules H2 x 1 mole H2/6.02x1023 molecules = 0.498 moles H2
From the balanced equation, we see that 1 mole H2 produces 2 moles HF. Therefore, we can now find the theoretical mass of HF produced from 0.498 moles H2:
0.498 moles H2 x 2 moles HF/1 mol H2 = 0.996 moles HF formed.
The molar mass of HF = 20.01 g/mole, thus...
0.996 moles HF x 20.01 g/mole = 19.93 g HF = 20. g HF formed (to 2 significant figures)
Burning a magnesium ribbon in the air is an addition reaction while heating potassium manganate 7 is a decomposition reaction.
<h3>Addition and decomposition reactions</h3>
Magnesium burns in air to produce magnesium oxide as follows:

Potassium manganate 7 burns to produce multiple products as follows:

Thus, the MgO will be heavier than Mg. On the other hand,
will be less heavy than
.
More on reactions can be found here: brainly.com/question/17434463
#SPJ1
Dozen = 12,
ii. 1 score = 20
iii. 1 ream = 500
iv. 1 gross = 1.44
Answer:
In strict SI units (highly recommended), express n in moles, R is the universal gas constant R=8.314Jmol−K , T is the temperature in Kelvins, and the volume V is in m3 . The resulting pressure P will be in Pa. R=0.082054L−atmmol−K , in which case the pressure is calculated in atm.