Answer:
Explanation:
False.
No. The temperature inside the container is a dependent variable. It depends on what the box is made of.
According to Einstein the energy of photon is given by the equation,
E = hν = h . c/λ
where h is Planck's constant, c is the speed of light, ν is the frequency of light and λ is the wavelength of light.
Given, wavelength of photon = 413 nm = 413 x 10⁻⁹ m
Conversion factor: 1 nm = 10⁻⁹ m
c = 3 x 10⁸ m/s
h = 6.626× 10⁻³⁴ J.s
Substituting the data into the equation we get,
E = h . c/λ
E = 6.626× 10⁻³⁴ J.s x (3 x 10⁸ m/s) / 413 x 10⁻⁹ m
E = 4.8 x 10⁻¹⁹ J
The energy of this blue light is 4.8 x 10⁻¹⁹ J
Answer:
92.2 m
Explanation:
Given that:=
The breadth = 304 mm
Height = 0.014 mm
Let Length = x mm
Volume = 
Thus,
Volume = 
Also, 1 mm³ = 0.001 cm³
So, volume = 0.004256 cm³
Given that density = 2.7 g/cm³
Mass = 1.06 kg = 1060 g
So,

So,
0.004256*x = 392.59
x = 92243.89 mm
Length of foil = 92243.89 mm = 92.2 m
Answer:
pH = 10.38
Explanation:
∴ molar mass C9H13N = 135.21 g/mol
∴ pKb = - log Kb = 4.2
⇒ Kb = 6.309 E-5 = [OH-][C9H20O3N+] / [C9H13N]
∴ <em>C</em> sln = (205 mg/L )*(g/1000 mg)*(mol/135.21 g) = 1.516 E-3 M
mass balance:
⇒ <em>C</em> sln = 1.516 E-3 = [C9H20O3N+] + [C9H13N]......(1)
charge balance:
⇒ [C9H20O3N+] + [H3O+] = [OH-]; [H3O+] is neglected, come from water
⇒ [C9H20O3N+] = [OH-].......(2)
(2) in (1):
⇒ [C9H13N] = 1.516 E-3 - [OH-]
replacing in Kb:
⇒ Kb = 6.3096 E-5 = [OH-]² / (1.516 E-3 - [OH-])
⇒ [OH-]² + 6.3096 E-5[OH] - 7.26613 E-8 = 0
⇒ [OH-] = 2.3985 E-4 M
∴ pOH = - Log [OH-]
⇒ pOH = 3.62
⇒ pH = 14 - pOH = 14 - 3.62 = 10.38