An ideal gas differs from a real gas in that the molecules of an ideal gas have no attraction for one another.
An ideal gas is defined as one in which collisions between atoms or molecules are perfectly elastic and in which there are no inter-molecular attractive forces. A real gas on the other hand is a gas that does not behave as an ideal gas due to interactions between gas molecules. Particles in a real gas have a real volume since real gases are made up of molecules or atoms that typically take up some space even though they are extremely small.
Answer:
Electrons will flow from left to right through the wire.
Pb^2+ ions will be reduccd to Pb metal.
The concentration of Sn2+ ions in the left compartment will increase.
Explanation:
Looking at the relative electrode potentials of the two metals
Sn= -0.14
Pb=-0.13
Tin is expected to function as the anode (left hand half cell) and lead as the anode (right hand half cell) tin oxidizes to sn^2+ hence its concentration increases on the left compartment while lead is reduced to ordinary lead metal on the right hand half cell . since oxidation occurs on the left hand side, electrons flow from left to right.
Answer:
The answer is <u>applied research</u>
Explanation:
Pure research becomes <u>applied research</u> when scientists develop a hypothesis based on the data and try to solve a specific problem.
This is because the pure research try to understand, predict or explain the behavior of different phenomena <em>(the data)</em> while the applied research try to develop new technologies or methods (<em>hypothesis)</em> to take part, intervene and/or create changes on these phenomena and solve a <em>specific problem.</em>
Answer:
Exothermic reaction: In exothermic reaction, energy is transferred to the surroundings, and the surrounding temperature increases, this is known as exothermic reaction. In other words energy exits in exothermic reaction. Some example of exothermic reactions are:
1) Neutralisation reaction.
2) Combustion reaction.
3) Some oxidation reaction.
Endothermic reaction: In endothermic reaction, energy is taken in from the surrounding, and the surrounding temperature decreases, this is known as endothermic reaction. In other words energy enters in endothermic reaction. Some example of exothermic reactions are:
1) Thermal decomposition.
2) Reaction between citric acid and sodium hydrogen carbonate.