Answer:
The work done on the object by the force in the 5.60 s interval is 40.93 J.
Explanation:
Given that,
Force 
Mass of object = 2.00 kg
Initial position 
Final position 
Time = 4.00 sec
We need to calculate the work done on the object by the force in the 5.60 s interval.
Using formula of work done


Put the value into the formula




Hence, The work done on the object by the force in the 5.60 s interval is 40.93 J.
Answer:
C) the magnitude of the acceleration is a minimum.
Explanation:
As we know that ,the general equation of the simple harmonic motion given as
The displacement x given as
x=X sinω t
Then the velocity v will become
v= X ω cosωt
The acceleration a
a= - X ω² sinω t
The speed of the particle will be maximum when cosωt will become 1 unit.
It means that sinωt will become zero.So acceleration and displacement will be minimum.
Therefore when speed is maximum then acceleration will be minimum.
At the mean position the speed of the particle is maximum that is why kinetic energy also will be maximum and the potential energy will be minimum.
Therefore option C is correct.
A scientific theory is different from a hypothesis because a theory is a educated guess that is being worked on and proven correct and a hypothesis is a educated guess it is a guess that needs to be proven.
Answer: The correct answer is : From the period-luminosity relation for Cepheids, he was able to determine the distance to Andromeda and show that it was far outside the Milky Way Galaxy.
Explanation: Hubble's law says that the recession velocity of a galaxy is directly proportional to its distance from us. Hubble measured the distance to the Andromeda galaxy by applying the period-luminosity relationship to Cepheid.