Answer:
F = 352 N
Explanation:
we know that:
F*t = ΔP
so:
F*t = M
-M
where F is the force excerted by the wall, t is the time, M the mass of the ball,
the final velocity of the ball and
the initial velocity.
Replacing values, we get:
F(0.05s) = (0.8 kg)(11m/s)-(0.8 kg)(-11m/s)
solving for F:
F = 352 N
Answer:
the <em>ratio F1/F2 = 1/2</em>
the <em>ratio a1/a2 = 1</em>
Explanation:
The force that both satellites experience is:
F1 = G M_e m1 / r² and
F2 = G M_e m2 / r²
where
- m1 is the mass of satellite 1
- m2 is the mass of satellite 2
- r is the orbital radius
- M_e is the mass of Earth
Therefore,
F1/F2 = [G M_e m1 / r²] / [G M_e m2 / r²]
F1/F2 = [G M_e m1 / r²] × [r² / G M_e m2]
F1/F2 = m1/m2
F1/F2 = 1000/2000
<em>F1/F2 = 1/2</em>
The other force that the two satellites experience is the centripetal force. Therefore,
F1c = m1 v² / r and
F2c = m2 v² / r
where
- m1 is the mass of satellite 1
- m2 is the mass of satellite 2
- v is the orbital velocity
- r is the orbital velocity
Thus,
a1 = v² / r ⇒ v² = r a1 and
a2 = v² / r ⇒ v² = r a2
Therefore,
F1c = m1 a1 r / r = m1 a1
F2c = m2 a2 r / r = m2 a2
In order for the satellites to stay in orbit, the gravitational force must equal the centripetal force. Thus,
F1 = F1c
G M_e m1 / r² = m1 a1
a1 = G M_e / r²
also
a2 = G M_e / r²
Thus,
a1/a2 = [G M_e / r²] / [G M_e / r²]
<em>a1/a2 = 1</em>
Answer:
I think D sorry if I'm wrong
Explanation:
Using Kinematics,
we have a = (v - u) / t.
Therefore a = (36m/s - 22m/s) / 5s = 2.8m/s².
Answer:
Following are the responses to these question:
Explanation:
Since the
is the current of ckt which depend on the reactance which inductor that also enables the ckt and inductor resistance
for capacities
for

When 
then
therefore,
remains at the same so, the maximum current remains the in same ckt.