Answer:
0.5 m
Explanation:
From the question given above, the following data were obtained:
Mass (m) = 0.060 kg
Period (T) = 1.4 s
Lenght (L) =?
NOTE:
1. Acceleration due to gravity (g) = 10 m/s²
2. Pi (π) = 3.14
The length of the pendulum can be obtained as follow:
T = 2π√(L/g)
1.4 = 2 × 3.14 × √(L/10)
1.4 = 6.28 × √(L/10)
Divide both side by 6.28
1.4 / 6.28 = √(L/10)
Take the square of both side
(1.4 / 6.28)² = L/10
Cross multiply
L = 10 × (1.4 / 6.28)²
L = 0.5 m
Therefore, the length of the pendulum is 0.5 m
Answer:
1.The Sun is located at one of the foci of the planets' elliptical orbits.
2.The path of the planets around the Sun is elliptical in shape.
Explanation:
As per Kepler's law of planet motion we know that all planets revolve around the sun in elliptical path in such a way that position of Sun must be at one of the focii of the path
So all planets are in elliptical path always
Position of sun is always at one of the focus
so correct answer will be
1.The Sun is located at one of the foci of the planets' elliptical orbits.
2.The path of the planets around the Sun is elliptical in shape.
there will be no noise with the ball
Answer:
Theta1 = 12° and theta2 = 168°
The solution procedure can be found in the attachment below.
Explanation:
The Range is the horizontal distance traveled by a projectile. This diatance is given mathematically by Vo cos(theta) t. Where t is the total time of flight of the projectile in air. It is the time taken for the projectile to go from starting point to finish point. This solution assumes the projectile finishes uts motion on the same horizontal level as the starting point and as a result the vertical displacement is zero (no change in height).
In the solution as can be found below, the expression to calculate the range for any launch angle theta was first derived and then the required angles calculated from the equation by substituting the values of the the given quantities.