Answer:
As an object approaches the speed of light, its mass rises precipitously. If an object tries to travel 186,000 miles per second, its mass becomes infinite, and so does the energy required to move it. For this reason, no normal object can travel as fast or faster than the speed of light.
Explanation:
Answer:
No, it does not.
Explanation:
According to the Law of Gravitation, something going down has more kinetic energy than something going up because it attracts pressure from around it when going down. When it goes up, it has less gravitational force and inertia also stops the ball from rolling upward. Therefore, without the amount of kinetic energy, it will not have the same amount of acceleration.
Hello!
We can use Faraday's Law of Electromagnetic Induction to solve.

ε = Induced emf (4.08 V)
N = Number of loops (?)
= Magnetic Flux (Wb)
t = time (s)
**Note: The negative sign can be disregarded for this situation. The sign simply shows how the induced emf OPPOSES the current.
Now, we know that
is analogous to the change in magnetic flux over change in time, or
, so:

Rearrange the equation to solve for 'N'.

Plug in the given values to solve.

**Rounding up because we cannot have a part of a loop.
If the probes are identical, then the one that feels a larger gravitational
force is orbiting closer to Jupiter than the other one is.
If they're not identical, then the one with greater mass will feel more
gravitational force than the one with less mass, even if they're both
the same distance from Jupiter. (We know this from the experimental
observation that fatter people weigh more, even on Earth.)