C) light waves travel faster than sound waves
You were correct
Answer:
v = 7934.2 m/s
Explanation:
Here the total energy of the Asteroid and the Earth system will remains conserved
So we will have

now we know that





now from above formula

now we have

now plug in all data


Answer:
12.5 m/s
Explanation:
The motion of the hammer is a free fall motion, so a uniformly accelerated motion, therefore we can use the following suvat equation:

Where, taking downward as positive direction, we have:
s = 8 m is the displacement of the hammer
u = 0 is the initial velocity (it is dropped from rest)
v is the final velocity
is the acceleration of gravity
Solving the equation for v, we find the final velocity:

So, the final speed is 12.5 m/s.
I think the answer is ruthorford
Let us consider two bodies having masses m and m' respectively.
Let they are separated by a distance of r from each other.
As per the Newtons law of gravitation ,the gravitational force between two bodies is given as -
where G is the gravitational force constant.
From the above we see that F ∝ mm' and 
Let the orbital radius of planet A is
= r and mass of planet is
.
Let the mass of central star is m .
Hence the gravitational force for planet A is 
For planet B the orbital radius
and mass
Hence the gravitational force 
![f_{2} =G\frac{m*3m_{1} }{[2r_{1}] ^{2} }](https://tex.z-dn.net/?f=f_%7B2%7D%20%3DG%5Cfrac%7Bm%2A3m_%7B1%7D%20%7D%7B%5B2r_%7B1%7D%5D%20%5E%7B2%7D%20%7D)

Hence the ratio is 
[ ans]