Hydrogen
Helium
Lithium
Beryllium
Boron
2C + O2 = 2CO is balanced.
If you look you can see the first side has 2 Cs and 2 Os, and the other side has the same amount, just put together making both sides even and balanced.
Answer: The empirical formula is 
Explanation:
If percentage are given then we are taking total mass is 100 grams.
So, the mass of each element is equal to the percentage given.
Mass of Br= 58.37 g
Mass of F = (100-58.37) = 41.63 g
Step 1 : convert given masses into moles.
Moles of Br=
Moles of F =
Step 2 : For the mole ratio, divide each value of moles by the smallest number of moles calculated.
For Br = 
For F = 
The ratio of Br: F= 1 : 3
Hence the empirical formula is 
A (pretty sure) PLEASE MAKE ME BRAINLIEST
Answer:
0.246 kg
Explanation:
There is some info missing. I think this is the original question.
<em>A chemist adds 370.0mL of a 2.25 M iron(III) bromide (FeBr₃) solution to a reaction flask. Calculate the mass in kilograms of iron(III) bromide the chemist has added to the flask. Be sure your answer has the correct number of significant digits.</em>
<em />
We have 370.0 mL of 2.25 M iron(III) bromide (FeBr₃) solution. The moles of FeBr₃ are:
0.3700 L × 2.25 mol/L = 0.833 mol
The molar mass of iron(III) bromide is 295.56 g/mol. The mass corresponding to 0.833 moles is:
0.833 mol × 295.56 g/mol = 246 g
1 kilogram is equal to 1000 grams. Then,
246 g × (1 kg/1000 g) = 0.246 kg