Answer:Non-covalent bonds
Explanation:
The Non-covalent bonds are bonds such as van der Waals forces of attraction, the Hydrogen bonds, hydrophobic bonds and so on. The Non-covalent bonds are very important types of bonding in large biological molecules.
Just like the question says, the Non-covalent bonds, ''makes it possible for a macromolecule to interact with great specificity with just one out of the many thousands of different molecules present inside a cell".
Ionic bonding is also a Non-covalent bonding. They(Non-covalent bonds) helps in the stability of large macromolecules.
Answer:
1,085g of water
Explanation:
If we have the value 4520kj is because the question is related to Energy and heat capacity. In this case, the law and equation that we use is the following:
Q= m*C*Δt where;
Q in the heat, in this case: 4520kj
m is the mas
Δt= is the difference between final-initial temperature (change of temperature), in this exercise we don´t have temperatura change.
In order to determine the mass, I will have the same equation but finding m
m= Q/C*Δt without m=Q/C
So: m= 4,520J/4.18J/g°C
m= 1,0813 g
Explanation:
The O atom is sp3 in a water molecule, with two sigma bonds and two lone pairs of electrons like that in water. The steric integer is thus 4, and its structure is tetrahedral.
The C atom is sp hybridised into two identical bonds and two identical bonds in acetylene.
The steric integer is therefore 2 because only sigma bonds are engaged in deciding hybridization, and its structure is linear.
The C atom is sp2 hybridised in ethene with single pi bond and three sigma identical bonds.
Thus the steric integer is 3, and its structure is planar trigonal.
The C atom is sp2 hybridized in ethene, with one pi bond and three sigma identical bonds.
The steric integer would therefore be 3 and its structure is planar trigonal.
The O atom is sp3 in a water molecule with two bond pairs and two lone pairs of electrons like that. The steric integer is thus 4, and its structure is tetrahedral.
The C atom is sp3 in a methane ring, with 4 bond pairs and no solitary pairs of electrons like that. The steric integer is thus 4, and its structure is tetrahedral.
Answer:
Upwelling is the natural process which brings cold, nutrient-rich water to the surface. A huge upwelling regularly occurs off the coast of Peru, which enjoys a large fishing industry as a result. Upwelling is a process in which currents bring deep, cold water to the surface of the ocean.
Explanation:
good luck
<u>Answer:</u> The amount remained after 151 seconds are 0.041 moles
<u>Explanation:</u>
All the radioactive reactions follows first order kinetics.
Rate law expression for first order kinetics is given by the equation:
![k=\frac{2.303}{t}\log\frac{[A_o]}{[A]}](https://tex.z-dn.net/?f=k%3D%5Cfrac%7B2.303%7D%7Bt%7D%5Clog%5Cfrac%7B%5BA_o%5D%7D%7B%5BA%5D%7D)
where,
k = rate constant = 
t = time taken for decay process = 151 sec
= initial amount of the reactant = 0.085 moles
[A] = amount left after decay process = ?
Putting values in above equation, we get:
![4.82\times 10^{-3}=\frac{2.303}{151}\log\frac{0.085}{[A]}](https://tex.z-dn.net/?f=4.82%5Ctimes%2010%5E%7B-3%7D%3D%5Cfrac%7B2.303%7D%7B151%7D%5Clog%5Cfrac%7B0.085%7D%7B%5BA%5D%7D)
![[A]=0.041moles](https://tex.z-dn.net/?f=%5BA%5D%3D0.041moles)
Hence, the amount remained after 151 seconds are 0.041 moles