1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Helga [31]
3 years ago
9

Which best explains Susan B Anthony purpose in her speech “Women’s rights to the suffrage”

Engineering
2 answers:
Furkat [3]3 years ago
6 0

Answer:

She wrote and delivered a speech in 1873, which came to be known as the “Women's Rights to the Suffrage” speech. In her address, she lets the audience know of her “crime” of voting. She reminds the listener that the Constitution of the United States says “we the people” and does not exclude women as people

Arte-miy333 [17]3 years ago
3 0

Answer:

D. To show why she was justified in voting.

Explanation:

You might be interested in
It describes the physical and social elements common to this work. Note that common contexts are listed toward the top, and less
QveST [7]

Answer:

BCDE

Explanation:

just look at the link, it tells you.

7 0
3 years ago
Read 2 more answers
A nozzle receives an ideal gas flow with a velocity of 25 m/s, and the exit at 100 kPa, 300 K velocity is 250 m/s. Determine the
Margaret [11]

Given Information:

Inlet velocity = Vin = 25 m/s

Exit velocity = Vout = 250 m/s

Exit Temperature = Tout = 300K

Exit Pressure = Pout = 100 kPa

Required Information:

Inlet Temperature of argon = ?

Inlet Temperature of helium = ?

Inlet Temperature of nitrogen = ?

Answer:

Inlet Temperature of argon = 360K

Inlet Temperature of helium = 306K

Inlet Temperature of nitrogen = 330K

Explanation:

Recall that the energy equation is given by

$ C_p(T_{in} - T_{out}) = \frac{1}{2} \times (V_{out}^2 - V_{in}^2) $

Where Cp is the specific heat constant of the gas.

Re-arranging the equation for inlet temperature

$ T_{in}  = \frac{1}{2} \times \frac{(V_{out}^2 - V_{in}^2)}{C_p}  + T_{out}$

For Argon Gas:

The specific heat constant of argon is given by (from ideal gas properties table)

C_p = 520 \:\: J/kg.K

So, the inlet temperature of argon is

$ T_{in}  = \frac{1}{2} \times \frac{(250^2 - 25^2)}{520}  + 300$

$ T_{in}  = \frac{1}{2} \times 119  + 300$

$ T_{in}  = 360K $

For Helium Gas:

The specific heat constant of helium is given by (from ideal gas properties table)

C_p = 5193 \:\: J/kg.K

So, the inlet temperature of helium is

$ T_{in}  = \frac{1}{2} \times \frac{(250^2 - 25^2)}{5193}  + 300$

$ T_{in}  = \frac{1}{2} \times 12  + 300$

$ T_{in}  = 306K $

For Nitrogen Gas:

The specific heat constant of nitrogen is given by (from ideal gas properties table)

C_p = 1039 \:\: J/kg.K

So, the inlet temperature of nitrogen is

$ T_{in}  = \frac{1}{2} \times \frac{(250^2 - 25^2)}{1039}  + 300$

$ T_{in}  = \frac{1}{2} \times 60  + 300$

$ T_{in}  = 330K $

Note: Answers are rounded to the nearest whole numbers.

5 0
3 years ago
The Ethernet (CSMA/CD) alternates between contention intervals and successful transmissions. Assume a 100 Mbps Ethernet over 1 k
Vesnalui [34]
<h3><u>CSMA/CD Protocol: </u></h3>

Carrier sensing can transmit the data at anytime only the condition is before sending the data sense carrier if the carrier is free then send the data.

But the problem is the standing at one end of channel, we can’t send the entire carrier. Because of this 2 stations can transmit the data (use the channel) at the same time resulting in collisions.

There are no acknowledgement to detect collisions, It's stations responsibility to detect whether its data is falling into collisions or not.

<u>Example: </u>

T_{P}=1 H r, at time t = 10.00 AM, A starts, 10:59:59 AM B starts at time 11:00 AM collision starts.

12:00 AM A will see collisions

Pocket Size to detect the collision.

\begin{aligned}&T_{t} \geq 2 T_{P}\\&\frac{L}{B} \geq 2 T_{P}\\&L \geq 2 \times T_{P} \times B\end{aligned}

CSMA/CD is widely used in Ethernet.

<u>Efficiency of CSMA/CD:</u>

  • In the previous example we have seen that in worst case 2 T_{P} time require to detect a collision.
  • There could be many collisions may happen before a successful completion of transmission of a packet.

We are given number of collisions (contentions slots)=4.

\text { Propagation day }=\frac{\text {distance}}{\text {speed}}

Distance = 1km = 1000m

\begin{aligned}&\text { Speed }=2 \times 10^{8} \mathrm{m} / \mathrm{sec}\\ &T_{P}=\frac{1000}{2 \times 10^{8}}=(0.5) \times 10^{-5}=5 \times 10^{-6}\\ &T_{t}=5 \mu \mathrm{sec}\end{aligned}

7 0
3 years ago
Find the total present worth of a series of cash flows with an annual interest rate of 2% per year. Round your answer to the nea
prisoha [69]

The total present worth is $19,783.01

The present worth of a series of cash flow is the value of the cash flows in year 0 (today)

Cash flow in year 0 = 5330

Cash flow in year 1 = 0

Cash flow in year 2 = 0

Cash flow in year 3 = 13075 / (1.02)^3 = 12,320.86

Cash flow in year 4 = 2308 / (1.02)^4 = 2,132.24

Present worth = $19,783.01

A similar question was solved here: brainly.com/question/9641711?referrer=searchResults

5 0
3 years ago
Steam enters an adiabatic condenser (heat exchanger) at a mass flow rate of 5.55 kg/s where it condensed to saturated liquid wat
Evgen [1.6K]

Answer:

The minimum mass flow rate will be "330 kg/s".

Explanation:

Given:

For steam,

m_{s}=5.55 \ kg/s

\Delta h=2491 \ kg/kj

For water,

\Delta T=10^{\circ}C

(Cp)_{w}=4.184 \ kJ/kg^{\circ}C

They add energy efficiency as condenser becomes adiabatic, with total mass flow rate of minimal vapor,

⇒  m_{s}\times (\Delta h)=M_{w}\times(Cp)_{w}\times \Delta T

On putting the estimated values, we get

⇒  5.55\times 2491=M_{w}\times 4.184\times 10\\

⇒  13825.05=M_{w}\times 41.84

⇒  M_{w}=330 \ kg/s

7 0
3 years ago
Other questions:
  • Find the linear speed of the bottom of a test tube in a centrifuge if the centripetal acceleration there is 5.4×104 times the ac
    6·1 answer
  • How do i get my camera to work in the app, i just got a new phone and it won’t pull up the camera
    14·1 answer
  • Calculate the potential energy in kJ of a human body (70 kg) possesses on top of the Empire State Building (1,250 ft tall).
    7·1 answer
  • 6. Question
    13·1 answer
  • The natural material in a borrow pit has a mass unit weight of 110.0 pcf and a water content of 6%, and the specific gravity of
    11·1 answer
  • The difference in potential energy between an electron at the negative terminal and one at the positive terminal is called the _
    11·1 answer
  • Un conejo puede recorrer una distancia de 90 m en 7 segundos .Cual es su velocidad?
    5·1 answer
  • Technician A says when you push the horn button, electromagnetism moves an iron bar inside the horn, which opens and closes cont
    5·2 answers
  • Explain how you would solve for total resistance in a parallel circuit versus a series circuit. How would you apply and solve fo
    10·1 answer
  • On what kind of sectional drawing would you find the maximum length of a building?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!