The answer is windmill it was used for electricity
Answer:
Circular tube
Explanation:
Now for better understanding lets take an example
Lets take
Diameter of solid bar=
cm
Outer diameter of tube =6 cm
Inner diameter of tube=2 cm
So from we can say that both tubes have equal cross sectional area.
We know that buckling load is given as
If area moment of inertia(I) is high then buckling load will be high.
We know that area moment of inertia(I)
For circular tube 
For circular bar
Now by putting the values
For circular tube 
For circular bar 
So we can say that for same cross sectional area the area moment of inertia(I) is high for tube as compare to bar.So buckling load will be higher in tube as compare to bar.
Answer:
I hope following attachment will help you a lot!
Explanation:
Answer:
12.332 KW
The positive sign indicates work done by the system ( Turbine )
Explanation:
Stagnation pressure( P1 ) = 900 kPa
Stagnation temperature ( T1 ) = 658K
Expanded stagnation pressure ( P2 ) = 100 kPa
Expansion process is Isentropic, also assume steady state condition
mass flow rate ( m ) = 0.04 kg/s
<u>Calculate the Turbine power </u>
Assuming a steady state condition
( p1 / p2 )^(r-1/r) = ( T1 / T2 )
= (900 / 100)^(1.4-1/1.4) = ( 658 / T2 )
= ( 9 )^0.285 = 658 / T2
∴ T2 = 351.22 K
Finally Turbine Power / power developed can be calculated as
Wt = mCp ( T1 - T2 )
= 0.04 * 1.005 ( 658 - 351.22 )
= 12.332 KW
The positive sign indicates work done by the system ( Turbine )