Answer:
i dont know but i will take the points tho hahah
Explanation:
Answer:
a. 4
b. 1 m
Explanation:
According to the question, the data is as follows
The Density of water at 20 degrees celcius is 1000 kg/m^3
Viscosity is 0.001kg/m/.s
Velocity V = 25 cm/s
V = 0.25 m/s
Now
a. The creeping motion is
As we know that
Reynold Number = (Density of water × V × d) ÷ (Viscosity)
1 = (1,000 × 0.25 × d) ÷ 0.0001
d = (1 × 0.001) ÷ (1,000 × 0.25)
= 4E - 06^m
= 4
b. Now the sphere diameter is
Reynold Number = (Density of water × V × d) ÷ (Viscosity)
250,000 = (1,000 × 0.25 × d) ÷ 0.0001
d = (250,000 × 0.001) ÷ (1,000 × 0.25)
= 1 m
Answer:
The solution code is written in Python:
- def convertCSV(number_list):
- str_list = []
- for num in number_list:
- str_list.append(str(num))
-
- return ",".join(str_list)
- result = convertCSV([22,33,44])
- print(result)
Explanation:
Firstly, create a function "convertCSV" with one parameter "number_list". (Line 1)
Next, create an empty list and assign it to a new variable <em>str_list</em>. (Line 2)
Use for-loop to iterate through all the number in the <em>number_list</em>.(Line 4). Within the loop, each number is converted to a string using the Python built-in function <em>str() </em>and then use the list append method to add the string version of the number to <em>str_list</em>.
Use Python string<em> join() </em>method to join all the elements in the str_list as a single string. The "," is used as a separator between the elements (Line 7) . At the end return the string as an output.
We can test the function by calling the function and passing [22,33,34] as an argument and we shall see "22,33,44" is printed as an output. (Line 9 - 10)
Answer:
(a) the cutting time to complete the facing operation = 11.667mins
b) the cutting speeds and metal removal rates at the beginning= 12.89in³/min and end of the cut. = 8.143in³/min
Explanation:
check attached files below for answer.