1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
IRINA_888 [86]
2 years ago
5

Hi, everyone I'm a high school student in Texas. My engineering teacher is asking us to find an active engineer to complete a li

st of questions, but I don't know any engineers. so If anyone can help I would be appreciated. Thanks

Engineering
1 answer:
jenyasd209 [6]2 years ago
6 0

Answer:ill look it up

Explanation:

You might be interested in
A steam pipe passes through a chemical plant, where wind passes in cross-flow over the outside of the pipe. The steam is saturat
valina [46]

Answer:

a) the rate of heat transfer from the pipe to the air is 23.866 watts

b) YES, the rate of heat transfer changes to 3518.61 watt

Explanation:

Given that:

steam is saturated at 17.90 bar.

the pipe is stainless steel and has an outside diameter of 6.75 cm

length = 34.7 m

Air flows over the pipe at 7.6 m/s

Bulk fluid temperature of 27°C

we know that

hD/k = 0.028 (Re)^0.8 (Pr)^0.33

Outside diameter of pipe = 6.75 cm

length of the pipe = 34.7 m

velocity of air = 7.6 m/s

Cp of air = 1.005 kJ/Kgk

viscosity of air = 1.81 × 10⁻⁵ kg/(m.sec)

thermal conductivity of air = 2.624 × 10⁻⁵ kw/m.k

so as

hD/k = 0.028 (Re)^0.8 (Pr)^0.33

hD/k = 0.028 (Dvp / u)^0.8 (Cpu / k)^0.33

(h × 0.0675 / 2.624 × 10⁻⁵) = (0.028 ([0.0675 × 7.6 × 1.225] / [1.81 ×10⁻⁵])^0.8) (((1.005 × 1.81 × 10⁻⁵) / (2.624 × 10⁻⁵))^0.33))

h = 0.0414 w/m².k

a)

Now to find the rate of heat transfer Q

Q = hAΔT

Q = 0.0414 × (2π × 0.03375 × 34.7) × (105.383 - 27)

Q = 23.866 watts

therefore the rate of heat transfer from the pipe to the air is 23.866 watts

b)

Now the flow direction changes to parallel flow, then

(h × 0.0675 / 2.624 × 10⁻⁵) = (0.028 ([34.7 × 7.6 × 1.225] / [1.81 ×10⁻⁵])^0.8) (((1.005 × 1.81 × 10⁻⁵) / (2.624 × 10⁻⁵))^0.33))

h = 6.1036 w/m².k

so from the steam table, saturated steam at 17.70 bar, temperature of steam will be 105.383°C

so to find the rate of heat transfer Q

Q = hAΔT

Q = 6.1036 × (2π × 0.03375 × 34.7) × (105.383 - 27)

Q = 3518.61 watt

Therefore the rate of heat transfer changes to 3518.61 watt

4 0
3 years ago
Explain why different types of equipment are required for proper conditioning of air
blagie [28]

Answer:

 Different types of equipment are required for proper conditioning of air because every air conditional space faces some geometrical and environmental issues or problems. There are some different types of equipment used for conditioning of air that are air system, water system and air-water system. In many cases the air conditioning of the system varies with size of the equipment.  

8 0
3 years ago
A 500-km, 500-kV, 60-Hz, uncompensated three-phase line has a positivesequence series impedance. z = 5 0.03 1 + j 0.35 V/km and
Anni [7]

Answer:

A) 282.34 - j 12.08 Ω

B) 0.0266 + j 0.621 / unit

C)

A = 0.812 < 1.09° per unit

B =  164.6 < 85.42°Ω  

C =  2.061 * 10^-3 < 90.32° s

D =  0.812 < 1.09° per unit

Explanation:

Given data :

Z ( impedance ) = 0.03 i  + j 0.35 Ω/km

positive sequence shunt admittance ( Y ) = j4.4*10^-6 S/km

A) calculate Zc

Zc = \sqrt{\frac{z}{y} }  =  \sqrt{\frac{0.03 i  + j 0.35}{j4.4*10^-6 } }    

    = \sqrt{79837.128< 4.899^o}   =  282.6 < -2.45°

hence Zc = 282.34 - j 12.08 Ω

B) Calculate  gl

gl = \sqrt{zy} * d  

 d = 500

 z = 0.03 i  + j 0.35

 y = j4.4*10^-6 S/km

gl =  \sqrt{0.03 i  + j 0.35*  j4.4*10^-6}  * 500

   = \sqrt{1.5456*10^{-6} < 175.1^0} * 500

   = 0.622 < 87.55 °

gl = 0.0266 + j 0.621 / unit

C) exact ABCD parameters for this line

A = cos h (gl) . per unit  =  0.812 < 1.09° per unit ( as calculated )

B = Zc sin h (gl) Ω  = 164.6 < 85.42°Ω  ( as calculated )

C = 1/Zc  sin h (gl) s  =  2.061 * 10^-3 < 90.32° s ( as calculated )

D = cos h (gl) . per unit = 0.812 < 1.09° per unit ( as calculated )

where :  cos h (gl)  = \frac{e^{gl} + e^{-gl}  }{2}

             sin h (gl) = \frac{e^{gl}-e^{-gl}  }{2}

     

7 0
2 years ago
Ma puteti ajuta cu un argument de 2 pagini despre inlocuirea garniturii de etansare de pe pistonul etrierului de franare la un a
Nitella [24]

Answer:

can you translate

Explanation:

what Is that?

4 0
3 years ago
If the rotational speed of a pump motor is reduced by 35%, what is the effect on the pump performance in terms of capacity, head
FinnZ [79.3K]

Answer:

- the capacity of the pump reduces by 35%.

- the head gets reduced by 57%.

the power consumption by the pump is reduced by 72%

Explanation:

the pump capacity is related to the speed as speed is reduces by 35%

so new speed is (100 - 35) = 65% of orginal speed

speed Q ∝ N ⇒ Q1/Q2 = N1/N2

Q2 = (N2/N1)Q1    

Q2 = (65/100)Q1

which means that the capacity of the pump is also reduces by 35%.

the head in a pump is related by

H ∝ N² ⇒ H1/H2 = N1²/N2²

H2 = (N2N1)²H1

H2 = (65/100)²H1 = 0.4225H1

so the head gets reduced by 1 - 0.4225 = 0.5775 which is 57%.

Now The power requirement of a pump is related as

P ∝ N³ ⇒ P1/P2 = N1³/N2³

P2 = (N2/N1)³P1

H2 = (65/100)²P1 = 0.274P1

So the reduction in power is 1 - 0.274 = 0.725 which is 72%

Therefore for a reduction of 35% of speed there is a reduction of 72% of the power consumption by the pump.  

8 0
3 years ago
Other questions:
  • A thermistor is a temperature‐sensing element composed of a semiconductor material, which exhibits a large change in resistance
    13·1 answer
  • Why dues brainy exist as a learning platform when it is just full of answers and you won't learn anything?
    8·1 answer
  • Two technicians are discussing a vehicle that will not start. Tech A states that a problem with the immobilizer system may be th
    9·1 answer
  • Select the correct answer.
    5·1 answer
  • Sam constructs a circuit, connects a lead acid battery of 2 V to a lamp of resistance 3 Ω and places an ammeter across it. What
    8·2 answers
  • An ideal Rankine cycle with reheat uses water as the working fluid. The conditions at the inlet to the first-stage turbine are p
    12·1 answer
  • An ideal vapor-compression refrigeration cycle using refrigerant-134a as the working fluid is used to cool a brine solution to −
    12·1 answer
  • Propose any improvements if there are any in brake system
    7·1 answer
  • Hello, so I have a watch and I don't know where the plugin for the charger is, or what brand it is. Please do help and please DO
    11·1 answer
  • How do all the cars work to move?
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!