1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ghella [55]
2 years ago
7

Ronny wants to calculate the mechanical advantage. He needs to determine the length of the effort arm and the length of the load

arm. How can he find the length of the effort arm? The length of the effort arm is the distance between the and the point at which effort is applied.
Engineering
1 answer:
kakasveta [241]2 years ago
8 0

Answer:

I hope it's helpful.

Explanation:

Simple Machines

Experiments focus on addressing areas pertaining to the relationships between effort force, load force, work, and mechanical advantage, such as: how simple machines change the force needed to lift a load; mechanical advantages relation to effort and load forces; how the relationship between the fulcrum, effort and load affect the force needed to lift a load; how mechanical advantage relates to effort and load forces and the length of effort and load arms.

Through investigations and models created with pulleys and levers, students find that work in physical terms is a force applied over a distance. Students also discover that while a simple machine may make work seem easier, in reality the amount of work does not decrease. Instead, machines make work seem easier by changing the direction of a force or by providing mechanical advantage as a ratio of load force to effort force.

Students examine how pulleys can be used alone or in combination affect the amount of force needed to lift a load in a bucket. Students find that a single pulley does not improve mechanical advantage, yet makes the effort applied to the load seem less because the pulley allows the effort to be applied in the direction of the force of gravity rather than against it. Students also discover that using two pulleys provides a mechanical advantage of 2, but that the effort must be applied over twice the distance in order to gain this mechanical advantage Thus the amount of work done on the load force remains the same.

Students conduct a series of experiments comparing the effects of changing load and effort force distances for the three classes of levers. Students discover that when the fulcrum is between the load and the effort (first class lever), moving the fulcrum closer to the load increases the length of the effort arm and decreases the length of the load arm. This change in fulcrum position results in an increase in mechanical advantage by decreasing the amount of effort force needed to lift the load. Thus, students will discover that mechanical advantage in levers can be determined either as the ratio of load force to effort force, or as the ratio of effort arm length to load arm length. Students then predict and test the effect of moving the fulcrum closer to the effort force. Students find that as the length of the effort arm decreases the amount of effort force required to lift the load increases.

Students explore how the position of the fulcrum and the length of the effort and load arms in a second-class lever affect mechanical advantage. A second-class lever is one in which the load is located between the fulcrum and the effort. In a second-class lever, moving the load changes the length of the load arm but has no effect on the length of the effort arm. As the effort arm is always longer than the load arm in this type of lever, mechanical advantage decreases as the length of the load arm approaches the length of the effort arm, yet will always be greater than 1 because the load must be located between the fulcrum and the effort.

Students then discover that the reverse is true when they create a third-class lever by placing the effort between the load and the fulcrum. Students discover that in the case of a third-class lever the effort arm is always shorter than the load arm, and thus the mechanical advantage will always be less than 1. Students also create a model of a third-class lever that is part of their daily life by modeling a human arm.

The CELL culminates with a performance assessment that asks students to apply their knowledge of simple machine design and mechanical advantage to create two machines, each with a mechanical advantage greater than 1.3. In doing so, students will demonstrate their understanding of the relationships between effort force, load force, pulleys, levers, mechanical advantage and work. The performance assessment will also provide students with an opportunity to hone their problem-solving skills as they test their knowledge.

Through this series of investigations students will come to understand that simple machines make work seem easier by changing the direction of an applied force as well as altering the mechanical advantage by afforded by using the machine.

Investigation focus:

Discover that simple machines make work seem easier by changing the force needed to lift a load.

Learn how effort and load forces affect the mechanical advantage of pulleys and levers.

You might be interested in
Please help me with this, picture.
Alenkasestr [34]
Maybe try 086 degrees
3 0
2 years ago
I’m doing a project on renewable energy. There are 6 energy sources. Solar, wind, geothermal, hydroelectric, tidal, and biomass.
nalin [4]

Answer:

"Biofuels"

Explanation:

I don't know if this counts but I guess it's not one of those.

6 0
2 years ago
Read 2 more answers
In the lab, a container of saturated soil had a mass of 113.27 g before it was placed in the oven and100.06 g after the soil had
kipiarov [429]

Answer:

  • Moisture/ water content w = 26%
  • Void ratio , e =  0.73

Explanation:

  • Initial mass of saturated soil w1 = mass of soil - weight of container

                                                 = 113.27 g - 49.31 g = 63.96 g

  • Final mass of soil after oven w2 = mass of soil - weight of container

                                                  = 100.06 g - 49.31 g = 50.75

Moisture /water content, w =   \frac{w1-w2}{w2} = \frac{63.96-50.75}{50.75} = 0.26 = 26%

Void ratio =  water content X specific gravity of solid

                  = 0.26 X 2.80 =0.728

5 0
3 years ago
An equal-tangent sag vertical curve (with a negative initial and a positive final grade) is designed for 55 mi/h. The PVI is at
Varvara68 [4.7K]

Answer:

The lowest point of the curve is at 239+42.5 ft where elevation is 124.16 ft.

Explanation:

Length of curve is given as

L=2(PVT-PVI)\\L=2(242+30-240+00)\\L=2(230)\\L=460 ft

G_2 is given as

G_2=\frac{E_{PVT}-E_{PVI}}{0.5L}\\G_2=\frac{127.5-122}{0.5*460}\\G_2=0.025=2.5 \%

The K value is given from the table 3.3 for 55 mi/hr is 115. So the value of A is given as

A=\frac{L}{K}\\A=\frac{460}{115}\\A=4

A is given as

-G_1=A-G_2\\-G_1=4.0-2.5\\-G_1=1.5\\G_1=-1.5\%

With initial grade, the elevation of PVC is

E_{PVC}=E_{PVI}+G_1(L/2)\\E_{PVC}=122+1.5%(460/2)\\E_{PVC}=125.45 ft\\

The station is given as

St_{PVC}=St_{PVI}-(L/2)\\St_{PVC}=24000-(230)\\St_{PVC}=237+70\\

Low point is given as

x=K \times |G_1|\\x=115 \times 1.5\\x=172.5 ft

The station of low point is given as

St_{low}=St_{PVC}-(x)\\St_{low}=23770+(172.5)\\St_{low}=239+42.5 ft\\

The elevation is given as

E_{low}=\frac{G_2-G_1}{2L} x^2+G_1x+E_{PVC}\\E_{low}=\frac{2.5-(-1.5)}{2*460} (1.72)^2+(-1.5)*(1.72)+125.45\\E_{low}=124.16 ft

So the lowest point of the curve is at 239+42.5 ft where elevation is 124.16 ft.

3 0
3 years ago
A colorful design for a product meant to appeal to a preschool audience reflects which of the following points in industrial des
lord [1]
Appeal to emotion

the product doesn’t need to be colorful to function but it would be more appealing to the intended audience if it was
6 0
3 years ago
Other questions:
  • What is the energy change when the temperature of 15.0 grams of solid silver is decreased from 37.3 °C to 20.5 °C ?
    13·1 answer
  • A First Stage in a turbine receives steam at 10 MPa, 800 C with an exit pressure of 800 KPa. Assume the stage is adiabatic and r
    5·1 answer
  • Many people use microwave ovens to cook their food. Which option is best described as an engineering endeavor related to microwa
    9·2 answers
  • When trying to solve a frame problem it will typically be necessary to draw many free body diagrams. a)-True b)-False
    6·1 answer
  • Define volume flow rate of air flowing in a duct of area A with average velocity V.
    13·1 answer
  • Different metabolic control systems have different characteristic time scales for a control response to be achieved. Match the t
    6·1 answer
  • Engine horsepower decreases ________% for every___________feet above sea level.
    9·1 answer
  • 1. A flywheel is suspended by resting the inside of the rim on a horizontal knife edge so that the wheel can swing in a vertical
    5·1 answer
  • EverFi future smart pie chart
    11·1 answer
  • Whose responsibility is it to provide direction on correct ladder usage?<br> select the best option.
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!