Let u = x², then we would have u² + 5u - 6 = 0
From here, we can factor it and get us (u-1)(u+6) = 0
So our solution for u is u = -6 or 1.
Now substitute u back to x².
x² = -6 or 1
x = ±√(-6) or ±√1
Since ±√(-6) is not real number, we ignore it.
Which leave us x = ±√1 = <span>±1
So our real solution is x = -1 or 1.</span>
Answer:
the answer for the question is 10+x
y-3
We can convert the equation of the line in vector form by imposing i cap ,j cap and k cap with direction ratios.
The movement of an object from one place to another is described using vectors. Vectors can be represented as points in a coordinate system in the cartesian system. Similar to this, a "n" tuple can be used to represent vectors with "n" dimensions.
In physics, a vector is a quantity with both magnitude and direction. It is often represented by an arrow whose length is proportional to the magnitude of the quantity and whose direction is the same as that of the quantity. Simply subtract the starting point from the terminal point to determine the vector in component form given the initial and terminal points.
Learn more about vector here
brainly.com/question/25811261
#SPJ4
Let
be the total amount of money paid by any given set of passengers. If there are
passengers in a car, then the driver must pay a toll of
.
Then
has first moment (equal to the mean)
![E[Y]=E[0.5X+3]=0.5E[X]+3E[1]=0.5\mu_X+3=\boxed{4.35}](https://tex.z-dn.net/?f=E%5BY%5D%3DE%5B0.5X%2B3%5D%3D0.5E%5BX%5D%2B3E%5B1%5D%3D0.5%5Cmu_X%2B3%3D%5Cboxed%7B4.35%7D)
and second moment
![E[Y^2]=E[0.25X^2+3X+9]=0.25E[X^2]+3E[X]+9E[1]=0.25E[X^2]+3\mu_X+9](https://tex.z-dn.net/?f=E%5BY%5E2%5D%3DE%5B0.25X%5E2%2B3X%2B9%5D%3D0.25E%5BX%5E2%5D%2B3E%5BX%5D%2B9E%5B1%5D%3D0.25E%5BX%5E2%5D%2B3%5Cmu_X%2B9)
Recall that the variance is the difference between the first two moments:
![\mathrm{Var}[X]=E[X^2]-E[X]^2\implies E[X^2]={\sigma^2}_X+{\mu_X}^2](https://tex.z-dn.net/?f=%5Cmathrm%7BVar%7D%5BX%5D%3DE%5BX%5E2%5D-E%5BX%5D%5E2%5Cimplies%20E%5BX%5E2%5D%3D%7B%5Csigma%5E2%7D_X%2B%7B%5Cmu_X%7D%5E2)
![\implies E[Y^2]=0.25({\sigma^2}_X+{\mu_X}^2)+3\mu_X+9\approx19.22](https://tex.z-dn.net/?f=%5Cimplies%20E%5BY%5E2%5D%3D0.25%28%7B%5Csigma%5E2%7D_X%2B%7B%5Cmu_X%7D%5E2%29%2B3%5Cmu_X%2B9%5Capprox19.22)
![\implies\mathrm{Var}[Y]=E[Y^2]-E[Y]^2=\boxed{0.3}](https://tex.z-dn.net/?f=%5Cimplies%5Cmathrm%7BVar%7D%5BY%5D%3DE%5BY%5E2%5D-E%5BY%5D%5E2%3D%5Cboxed%7B0.3%7D)