The answer is D. the mass of the two objects and the distance between them
Considering that Work, W, is:
W=F·d
You have: 224=F·32
So that F=7 N
Answer:
Magnitude of the Frictional force = (mv₀²)/2x₁
Explanation:
For the frictional force to stop the box, it has to produce the deceleration of the box; thereby being the opposing force to the box's motion.
According to Newton's first law of motion
Frictional force = (mass of the box) × (deceleration experienced by the box)
Let the mass of the box be m
Then,
Frictional force = ma
Then we can obtain the deceleration using the equations of motion
v² = u² + 2ax
u = Initial velocity = v₀ m/s
v = Final velocity = 0 m/s (since the box comes to rest at the end)
x = horizontal distance covered = (x₁ - x₀) = x₁ (since x₀ = 0)
a = ?
v² = u² + 2ax
0 = (v₀)² + 2ax₁
2ax₁ = - v₀²
a = - (v₀²)/(2x₁) (minus sign, because it's a deceleration)
Magnitude of the Frictional force = ma = (mv₀²)/2x₁
Total distance = 36500 m
The average velocity = 19.73 m/s
<h3>Further explanation</h3>
Given
vo=initial velocity=0(from rest)
a=acceleration= 1 m/s²
t₁ = 20 s
t₂ = 0.5 hr = 1800 s
t₃= 30 s
Required
Total distance
Solution
State 1 : acceleration


State 2 : constant speed

State 3 : deceleration


Total distance : state 1+ state 2+state 3

the average velocity = total distance : total time

Answer:
Explanation:
Given a square Piece whose side is 12 inches
Now square pieces are cut from each corner to make it a open box
Suppose x is the length of square piece at each corner
then
base square has a length of 
Dimension of new box is 
Volume 

For maximum volume differentiate with respect to x we get

we get x=6 and 4 but at x=6 volume becomes zero therefore x=4 is valid


