The solution is 22 2(n+3)-4&6
Answer:
Stress = 4.67 * 10^-7 N/m²
Explanation:
Young's modulus of the material = Stress/Strain
Given
Young's modulus = 228 x 10^9 Pa
Stress = 106,483 Pa
Required
Strain
From the formula;
Strain = Stress/Young modulus
Strain = 106,483 /228 x 10^9
Stress = 4.67 * 10^-7 N/m²
Because you would fall so slow that you would not need one.
Answer:39.88 rad/s
Explanation:
Given
mass of cylinder m_1=18 kg
radius R=1.7 m
angular speed 
mass of
dropped at r=0.3 m from center
let
be the final angular velocity of cylinder
Conserving Angular momentum




