They are both good conductors if both heat and electricity due to the sea of delocalized electrons that is floating around without getting bonded to an atom.
Such electrons can flow around freely to conduct heat and electricity.
The diameter of the circle is 18 m. Eugene incorrectly says that the circumference of the circle is about 113.04 m. What mistake did Eugene make? Use 3.14 for pi.
Option B
Neptune, Uranus, Saturn, Jupiter, Mars, Earth, Venus, Mercury correctly describes the usual order of planets inward toward the sun
<u>Explanation:</u>
Our solar system continues much considerably than the eight planets that revolve around the Sun. The position of the planets in the solar system, commencing inward to the sun is the accompanying: Neptune, Uranus, Saturn, Jupiter, Mars, Earth, Venus, Mercury.
Most next to the Sun, simply rocky material could resist the heat. For this logic, the first four planets: Mercury, Venus, Earth, and Mars are terrestrial planets. The four large outer worlds — Jupiter, Saturn, Uranus, and Neptune: because of their enormous size corresponding to the terrestrial planets. They're also frequently composed of gases like hydrogen, helium, and ammonia preferably than of rocky surfaces.
Answer:
2.When they reach the bottom of the fall
Explanation:
The potential energy of the waterfall is maximum at the maximum height and decreases with decrease in height. Based on the law of conservation of mechanical energy, as the potential energy of the water fall is decreasing with decrease in height of the fall, its kinetic energy will be increasing and the kinetic energy will be maximum at zero height (bottom of the fall).
Thus, the correct option is "2" When they reach the bottom of the fall
A. 0.5kg
To get this answer you need to follow the equation of KE=0.5*mv^2
But we don't have the m part in the equation. So just plug in the numbers to see which works best, though I can tell you before we do that the answer would be a.
As you may know, gravity, is a force of 9.8 m/s. And we want to get 9.8 Joules. So if we take a half a kg stone, release it at one meter, we get half of the normal gravity pull, 4.90 Joules. That means if we take half a kg stone and drop it at a doubled height, we get 9.8 Joules.
That is also to say that if we have a 1kg stone and drop it at one meter you will get the normal pull of gravity in Joules, 9.8J.
Be careful though, this does not mean if you drop a 1kg stone and a .5 kg stone the 1kg will hit first. This simply means that the 1kg stone will have twice the Joules that the .5kg stone has.