1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Bogdan [553]
2 years ago
15

There is a parallel plate capacitor. Both plates are 4x2 cm and are 10 cm apart. The top plate has surface charge density of 10C

/m^2 and the bottom plate has a surface charge density of -10C/m^2. Find the total charge on each plate. Find the electric field at the point exactly midway between the plates. Find the electric potential between the two plates. If an electron was in the middle the two plates, find the force on it.
Physics
1 answer:
liberstina [14]2 years ago
4 0

Answer:

1) The total charge of the top plate is 0.008 C

b) The total charge of the bottom plate is -0.008 C

2) The electric field at the point exactly midway between the plates is 0

3) The electric field between plates is approximately 1.1294 × 10¹² N/C

4) The force on an electron in the middle of the two plates is approximately 1.807 × 10⁻⁷ N

Explanation:

The given parameters of the parallel plate capacitor are;

The dimensions of the plates = 4 × 2 cm

The distance between the plates = 10 cm

The surface charge density of the top plate, σ₁ = 10 C/m²

The surface charge density of the bottom plate, σ₂ = -10 C/m²

The surface area, A = 0.04 m × 0.02 m = 0.0008 m²

1) The total charge of the top plate, Q = σ₁ × A = 0.0008 m² × 10 C/m² = 0.008 C

b) The total charge of the bottom plate, Q = σ₂ × A = 0.0008 m² × -10 C/m² = -0.008 C

2) The electrical field at the point exactly midway between the plates is given as follows;

V_{tot} = V_{q1} + V_{q2}

V_q = \dfrac{k \cdot q}{r}

Therefore, we have;

The distance to the midpoint between the two plates = 10 cm/2 = 5 cm = 0.05 m

V_{tot} =  \dfrac{k \cdot q}{0.05} + \dfrac{k \cdot (-q)}{0.05}  = \dfrac{k \cdot q}{0.05} - \dfrac{k \cdot q}{0.05} = 0

The electric field at the point exactly midway between the plates, V_{tot} = 0

3) The electric field, 'E', between plates is given as follows;

E =\dfrac{\sigma }{\epsilon_0 } = \dfrac{10 \ C/m^2}{8.854 \times 10^{-12} \ C^2/(N\cdot m^2)} \approx 1.1294 \times 10^{12}\ N/C

E ≈ 1.1294 × 10¹² N/C

The electric field between plates, E ≈ 1.1294 × 10¹² N/C

4) The force on an electron in the middle of the two plates

The charge on an electron, e = -1.6 × 10⁻¹⁹ C

The force on an electron in the middle of the two plates, F_e = E × e

∴ F_e = 1.1294 × 10¹² N/C ×  -1.6 × 10⁻¹⁹ C ≈ 1.807 × 10⁻⁷ N

The force on an electron in the middle of the two plates, F_e ≈ 1.807 × 10⁻⁷ N

You might be interested in
For your answer to this problem, just type in the numerical magnitude of the momentum - no units.
stepan [7]

Answer:

120 kg•m/s.

Explanation:

From the question given above, the following data were obtained:

Case 1

Mass of object = M

Velocity of object = V

Momentum = 15 kg•m/s

Case 2

Mass of object = 2M

Velocity of object = 4V

Momentum = ?

Momentum is defined as follow:

Momentum = mass × velocity

The momentum of object in case 2 can be obtained as follow:

From case 1

Momentum = mass × velocity

15 = M × V

15 = MV ....... (1)

From case 2:

Momentum = mass × velocity

Momentum = 2M × 4V

Momentum = 8MV ....... (2)

Finally , substitute the value of MV in equation 1 into equation 2.

Momentum = 8MV

MV = 15

Momentum = 8 × 15

Momentum = 120 kg•m/s

Therefore, an object with a mass of 2M and 4V would have a momentum of 120 kg•m/s

3 0
3 years ago
In the long jump, an athlete launches herself at an angle above the ground and lands at the same height, trying to travel the gr
NikAS [45]

A) 2.64t

B) 2.64h

C) 2.64D

Explanation:

A)

The motion of the athlete is equivalent to the motion of a projectile, which consists of two independent motions:

- A uniform motion (constant velocity) along the horizontal direction

- A uniformly accelerated motion (constant acceleration) along the vertical direction

The time of flight of a projectile can be found from the equations of motion, and it is found to be

t=\frac{2u sin \theta}{g}

where

u is the initial speed

\theta is the angle of projection

g is the acceleration due to gravity

In this problem, when the athlete is on the Earth, the time of flight is t.

When she is on Mars, the acceleration due to gravity is:

g'=0.379 g

where g is the acceleration due to gravity on Earth. Therefore, the time of flight on Mars will be:

t'=\frac{2usin \theta}{g'}=\frac{2u sin \theta}{0.379g}=\frac{1}{0.379}t=2.64t

B)

The maximum height reached by a projectile can be also found using the equations of motion, and it is given by

h=\frac{u^2 sin^2\theta}{2g}

where

u is the initial speed

\theta is the angle of projection

g is the acceleration due to gravity

In this problem, when the athlete is on the Earth, the maximum height is h.

When she is on Mars, the acceleration due to gravity is:

g'=0.379 g

where g is the acceleration due to gravity on Earth. So, the maximum height reached on Mars will be:

h'=\frac{u^2 sin^2\theta}{2g'}=\frac{u^2 sin^2\theta}{(0.379)2g}=\frac{1}{0.379}h=2.64h

C)

The horizontal distance covered by a projectile is also found from the equations of motion, and it is given by

D=\frac{u^2 sin(2\theta)}{g}

where:

u is the initial speed

\theta is the angle of projection

g is the acceleration due to gravity

In this problem, when the athlete is on the Earth, the horizontal distance covered is D.

When she is on Mars, the acceleration due to gravity is:

g'=0.379 g

where g is the acceleration due to gravity on Earth. Therefore, the horizontal distance reached on Mars will be:

D'=\frac{u^2 sin(2\theta)}{g'}=\frac{u^2 sin(2\theta)}{(0.379)g}=\frac{1}{0.379}D=2.64D

7 0
3 years ago
An electric current is passed through water and bubbles start forming.What is a logical conclusion for the bubbles?
Nezavi [6.7K]
Hydrogen and oxygen are being formed if an <span>electric current is passed through water and bubbles start forming.

Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions.

</span>
7 0
3 years ago
Read 2 more answers
How do I delete a question on here
EastWind [94]
I don’t think you can :((
7 0
3 years ago
Read 2 more answers
What is the equation: If F=10 N, a=5 m/s², m=?
Romashka-Z-Leto [24]

Answer:

2 kg

Explanation:

Remember:

F = m * a       re-arrange to

F/a   = m      substitute in the given values

10 / 5   =   2 kg

8 0
2 years ago
Other questions:
  • A 65 kg students is walking on a slackline, a length of webbing stretched between two trees. the line stretches and sags so that
    7·2 answers
  • How do you derive the drift velocity equation (I = nAve)?
    11·1 answer
  • two womans are of the same weight. one wears sandals with pointed heels while the other wears sandals with flat sole s. which on
    9·1 answer
  • a baby carriage is sitting at the top of a hill that is 21m high. the carriage with the baby weighs 25kg. calculate the speed th
    9·1 answer
  • Unlike other types of alternative energy, geothermal energy cannot be used to create electricity. true or false.
    12·2 answers
  • What is a transverse wave​
    11·2 answers
  • A 1.0 kg toy car is released at the top of a frictionless track on the left and rolls off of the track from its right
    6·2 answers
  • What is the submarine's maximum safe depth in sea water? The pressure inside the submarine is maintained at 1.0 atm
    9·1 answer
  • Which of the following are true about renewable resources?
    13·1 answer
  • Please help<br><br>why does 45° produce a max. range?​
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!