1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Bogdan [553]
3 years ago
15

There is a parallel plate capacitor. Both plates are 4x2 cm and are 10 cm apart. The top plate has surface charge density of 10C

/m^2 and the bottom plate has a surface charge density of -10C/m^2. Find the total charge on each plate. Find the electric field at the point exactly midway between the plates. Find the electric potential between the two plates. If an electron was in the middle the two plates, find the force on it.
Physics
1 answer:
liberstina [14]3 years ago
4 0

Answer:

1) The total charge of the top plate is 0.008 C

b) The total charge of the bottom plate is -0.008 C

2) The electric field at the point exactly midway between the plates is 0

3) The electric field between plates is approximately 1.1294 × 10¹² N/C

4) The force on an electron in the middle of the two plates is approximately 1.807 × 10⁻⁷ N

Explanation:

The given parameters of the parallel plate capacitor are;

The dimensions of the plates = 4 × 2 cm

The distance between the plates = 10 cm

The surface charge density of the top plate, σ₁ = 10 C/m²

The surface charge density of the bottom plate, σ₂ = -10 C/m²

The surface area, A = 0.04 m × 0.02 m = 0.0008 m²

1) The total charge of the top plate, Q = σ₁ × A = 0.0008 m² × 10 C/m² = 0.008 C

b) The total charge of the bottom plate, Q = σ₂ × A = 0.0008 m² × -10 C/m² = -0.008 C

2) The electrical field at the point exactly midway between the plates is given as follows;

V_{tot} = V_{q1} + V_{q2}

V_q = \dfrac{k \cdot q}{r}

Therefore, we have;

The distance to the midpoint between the two plates = 10 cm/2 = 5 cm = 0.05 m

V_{tot} =  \dfrac{k \cdot q}{0.05} + \dfrac{k \cdot (-q)}{0.05}  = \dfrac{k \cdot q}{0.05} - \dfrac{k \cdot q}{0.05} = 0

The electric field at the point exactly midway between the plates, V_{tot} = 0

3) The electric field, 'E', between plates is given as follows;

E =\dfrac{\sigma }{\epsilon_0 } = \dfrac{10 \ C/m^2}{8.854 \times 10^{-12} \ C^2/(N\cdot m^2)} \approx 1.1294 \times 10^{12}\ N/C

E ≈ 1.1294 × 10¹² N/C

The electric field between plates, E ≈ 1.1294 × 10¹² N/C

4) The force on an electron in the middle of the two plates

The charge on an electron, e = -1.6 × 10⁻¹⁹ C

The force on an electron in the middle of the two plates, F_e = E × e

∴ F_e = 1.1294 × 10¹² N/C ×  -1.6 × 10⁻¹⁹ C ≈ 1.807 × 10⁻⁷ N

The force on an electron in the middle of the two plates, F_e ≈ 1.807 × 10⁻⁷ N

You might be interested in
What kind of energy is in a rock at the edge of a cliff.
soldi70 [24.7K]

Answer:

kinetic energy

Explanation:

8 0
2 years ago
You throw a glob of putty straight up toward the ceiling, which is 3.60 m above the point where the putty leaves your hand. The
Sliva [168]

Answer:

Explanation:

Given

Height of ceiling is h=3.6\ m

Initial speed of Putty u=9.5\ m/s

Speed of Putty just before it strike the ceiling is given by

v^2-u^2=2as

where v=final velocity

u=initial velocity

a=acceleration

s=displacement

v^2-9.5^2=2\times (-9.8)\times 3.6

v^2=19.69

v=4.43\ m/s

time taken by putty to reach the ceiling

v=u+at

4.43=9.5-9.8\times t

t=\frac{5.07}{9.8}

t=0.517\ s

8 0
3 years ago
Which statement best describes frustration?
wlad13 [49]
C. when you can't achieve your goal due to events beyond your control
5 0
3 years ago
A 1.0-cm-tall object is 13 cm in front of a converging lens that has a 40 cm focal length.
kicyunya [14]

A) Image position: -19.3 cm

B) Image height: 1.5 cm, upright

Explanation:

A)

In order to calculate the image position, we can use the lens equation:

\frac{1}{p}+\frac{1}{q}=\frac{1}{f}

where

p is the distance of the object from the lens

q is the distance of the image from the lens

f is the focal length

In this problem, we have:

p = 13 cm (object distance)

f = 40 cm (focal length, positive for a converging lens)

So the image distance is

\frac{1}{q}=\frac{1}{f}-\frac{1}{p}=\frac{1}{40}-\frac{1}{13}=-0.0519\\q=\frac{1}{-0.0519}=-19.3 cm

The negative sign means that the image is virtual.

B)

In order to calculate the image height, we use the magnification equation:

\frac{y'}{y}=-\frac{q}{p}

where

y' is the image height

y is the object height

In this problem, we have:

y = 1.0 cm (object height)

p = 13 cm

q = -19.3 cm

Therefore, the image heigth is

y'=-\frac{qy}{p}=-\frac{(-19.3)(1.0)}{13}=1.5 cm

And the positive sign means the image is upright.

6 0
3 years ago
The potential energy an object has due to it position Is called _______ potential energy
Romashka-Z-Leto [24]
Gravitational potential energy :)
4 0
3 years ago
Other questions:
  • Rays of light incident on a lens and parallel to the principal axis of the lens coverage?
    15·2 answers
  • A 1.0 kg object moving at 4.5 m/s has a wavelength of:
    12·1 answer
  • A 10-m-long glider with a mass of 680 kg (including the passengers) is gliding horizontally through the air at 34 m/s when a 60
    10·1 answer
  • Different masses are hung on a spring scale calibrated in newtons. The force exerted by gravity on 1.0 kg is shown in the image
    13·1 answer
  • Eats plants and meats
    14·2 answers
  • Select the correct definition for each of the following terms:
    7·1 answer
  • Determine the location of the center of mass of a "L" whose thin vertical and horizontal members have the same length L and the
    12·1 answer
  • A client with a history of chronic alcoholism is brought to the emergency department after falling. He is disoriented, with peri
    11·2 answers
  • Samples of different materials, A and B, have the same mass, but the sample
    14·1 answer
  • Explain the concept of energy conversion as applied to the generation of electricity also known as electrical energy.​
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!