Answer:
x_total = (A + B) cos (wt + Ф)
we have the sum of the two waves in a phase movement
Explanation:
In this case we can see that the first boy Max when he enters the trampoline and jumps creates a harmonic movement, with a given frequency. When the second boy Jimmy enters the trampoline and begins to jump he also creates a harmonic movement. If the frequency of the two movements is the same and they are in phase we have a resonant process, where the amplitude of the movement increases significantly.
Max
x₁ = A cos (wt + Ф)
Jimmy
x₂ = B cos (wt + Ф)
total movement
x_total = (A + B) cos (wt + Ф)
Therefore we have the sum of the two waves in a phase movement
Answer:
3.2075*10^16
Explanation:
Q=P/V just search up a converter and youll get 30V and so you do 15/30 which is a half and a single coulomb is 6.415*10^16 so you half it. I belive this is correct if you dont belive me wait for someone else smarter to answer and compare.
Start by facing East. Your first displacement is the vector
<em>d</em>₁ = (225 m) <em>i</em>
Turning 90º to the left makes you face North, and walking 350 m in this direction gives the second displacement,
<em>d</em>₂ = (350 m) <em>j</em>
Turning 30º to the right would have you making an angle of 60º North of East, so that walking 125 m gives the third displacement,
<em>d</em>₃ = (125 m) (cos(60º) <em>i</em> + sin(60º) <em>j</em> )
<em>d</em>₃ ≈ (62.5 m) <em>i</em> + (108.25 m) <em>j</em>
The net displacement is
<em>d</em> = <em>d</em>₁ + <em>d</em>₂ + <em>d</em>₃
<em>d</em> ≈ (287.5 m) <em>i</em> + (458.25 m) <em>j</em>
and its magnitude is
|| <em>d</em> || = √[ (287.5 m)² + (458.25 m)² ] ≈ 540.973 m ≈ 541 m
Initial velocity (Vi) = 25 m/s
acceleration (a) = 
time interval (t) = 5 sec
let us assume that final velocity after 5 sec be Vf
As acceleration is constant, we can apply the the equation of motion with constant acceleration i.e. 
Hence, 
so, the velocity of bicyclist will be 5 m/s after 5 sec