1) In any collision the momentum is conserved
(2*m)*(vo) + (m)*(-2*vo) = (2*m)(v1') + (m)(v2')
candel all the m factors (because they appear in all the terms on both sides of the equation)
2(vo) - 2(vo) = 2(v1') + (v2') => 2(v1') + v(2') = 0 => (v2') = - 2(v1')
2) Elastic collision => conservation of energy
=> [1/2] (2*m) (vo)^2 + [1/2](m)*(2*vo)^2 = [1/2](2*m)(v1')^2 + [1/2](m)(v2')^2
cancel all the 1/2 and m factors =>
2(vo)^2 + 4(vo)^2 = 2(v1')^2 + (v2')^2 =>
4(vo)^2 = 2(v1')^2 + (v2')^2
now replace (v2') = -2(v1')
=> 4(vo)^2 = 2(v1')^2 + [-2(v1')]^2 = 2(v1')^2 + 4(v1')^2 = 6(v1')^2 =>
(v1')^2 = [4/6] (vo)^2 =>
(v1')^2 = [2/3] (vo)^2 =>
(v1') = [√(2/3)]*(vo)
Answer: (v1') = [√(2/3)]*(vo)
Answer:
(a) Yes, it is possible by raising the object to a greater height without acceleration.
Explanation:
The work-energy theorem states that work done on an object is equal to the change in kinetic energy, and change in kinetic energy requires a change in velocity.
If kinetic energy will not change, then velocity will not change, this means that there will be constant velocity and an object with a constant velocity is not accelerating.
If the object is not accelerating (without acceleration) and it remains at the same height (change in height = 0, and mgh = 0).
Thus, for work to be done on the object, without changing the kinetic energy of the object, the object must be raised to a greater height without acceleration.
Correct option is " (a) Yes, it is possible by raising the object to a greater height without acceleration".
Answer:
The correct option is c. 75 for this question
Explanation:
The correct option is c. 75 for this question:
Let's see how.
Continuity Equation is given as:
AcVc = AaVa
Where,
Aa = Area of Aorta
Ac = Area of the capillary
Va = Fluid speed in Aorta
Vc = Fluid speed in Capillary
So,
Assuming the fluid is the ideal one/
/4
Vc=
/4
Va
Vc=
Va
Dc = Da x
Dc = 2.5 cm x 
Dc = 73.192 cm
Dc = 75 approximately
Hence, the diameter of the capillary = 75 cm approximately
<em><u>The</u></em><em><u> </u></em><em><u>atomic</u></em><em><u> </u></em><em><u>nucleus</u></em><em><u> </u></em><em><u>consists</u></em><em><u> </u></em><em><u>of</u></em><em><u> </u></em><em><u>protons</u></em><em><u> </u></em><em><u>and</u></em><em><u> </u></em><em><u>neutrons</u></em><em><u>.</u></em>
<em><u>Additional</u></em><em><u> </u></em><em><u>information</u></em><em><u>:</u></em>
<em><u>Protons</u></em><em><u> </u></em><em><u>are</u></em><em><u> </u></em><em><u>positive</u></em><em><u>ly</u></em><em><u> </u></em><em><u>charged</u></em><em><u> </u></em><em><u>particl</u></em><em><u>e</u></em><em><u> </u></em><em><u>and</u></em><em><u> </u></em><em><u>neutrons</u></em><em><u> </u></em><em><u>are</u></em><em><u> </u></em><em><u>negative</u></em><em><u>ly</u></em><em><u> </u></em><em><u>charged</u></em><em><u> </u></em><em><u>particle</u></em><em><u>.</u></em>
<em><u>Hope</u></em><em><u> </u></em><em><u>this</u></em><em><u> </u></em><em><u>will</u></em><em><u> </u></em><em><u>help</u></em><em><u> </u></em><em><u>u</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>:</u></em><em><u>)</u></em>
The particles that carry charge through wires in a circuit are mobile electrons. The electric field direction within a circuit is by definition the direction that positive test charges are pushed. Thus, these negatively charged electrons move in the direction opposite the electric field.