1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Goshia [24]
3 years ago
5

Block m1 of mass 2m and velocity v0 is traveling to the right (+x) and makes an elastic head-on collision with block m2 of mass

m and velocity −2v0 (i.e., traveling to the left). What is the velocity v1′ of block m1 after the collision?
Physics
1 answer:
Oksana_A [137]3 years ago
4 0
1) In any collision the momentum is conserved

(2*m)*(vo) + (m)*(-2*vo) = (2*m)(v1') + (m)(v2')

candel all the m factors (because they appear in all the terms on both sides of the equation)

2(vo) - 2(vo) = 2(v1') + (v2') => 2(v1') + v(2') = 0 => (v2') = - 2(v1')

2) Elastic collision => conservation of energy

=> [1/2] (2*m) (vo)^2 + [1/2](m)*(2*vo)^2 = [1/2](2*m)(v1')^2 + [1/2](m)(v2')^2

cancel all the 1/2 and m factors =>

2(vo)^2 + 4(vo)^2 = 2(v1')^2 + (v2')^2 =>

4(vo)^2 = 2(v1')^2 + (v2')^2

now replace (v2') = -2(v1')

=> 4(vo)^2 = 2(v1')^2 + [-2(v1')]^2 = 2(v1')^2 + 4(v1')^2 = 6(v1')^2 =>

(v1')^2 = [4/6] (vo)^2 =>

(v1')^2 = [2/3] (vo)^2 =>

(v1') = [√(2/3)]*(vo)

Answer: (v1') = [√(2/3)]*(vo)




 
You might be interested in
An arrow movirg 48.3 m/s has 5.22<br> kg•m/s of momentum. What is its<br> mass?
spin [16.1K]

Answer:

0.11 kg

Explanation:

Ft = MV

Ft = momentum 5.22kg m/s

M = mass

V = velocity 48.3m/s

Therefore

5.22 = M x 48.3

Divide both sides by 48.3

5.22/48.3 = M x 48.3/48.3

0.11 = M

M = 0.11kg

6 0
3 years ago
A light-rail commuter train accelerates at a rate of 1.35 m/s. D A 33% Part (a) How long does it take to reach its top speed of
Dennis_Churaev [7]

Answer:

a) 17.49 seconds

b) 13.12 seconds

c) 2.99 m/s²

Explanation:

a) Acceleration = a = 1.35 m/s²

Final velocity = v = 85 km/h = 85\frac{1000}{3600}=23.61\ m/s

Initial velocity = u = 0

Equation of motion

v=u+at\\\Rightarrow 23.61=0+1.35t\\\Rightarrow t=\frac{23.61}{1.35}=17.49\ s

Time taken to accelerate to top speed is 17.49 seconds.

b) Acceleration = a = -1.8 m/s²

Initial velocity = u = 23.61\ m/s

Final velocity = v = 0

v=u+at\\\Rightarrow 0=23.61-1.8t\\\Rightarrow t=\frac{23.61}{1.8}=13.12\ s

Time taken to stop the train from top speed is 13.12 seconds

c) Initial velocity = u = 23.61 m/s

Time taken = t = 7.9 s

Final velocity = v = 0

v=u+at\\\Rightarrow 0=23.61+a7.9\\\Rightarrow a=\frac{-23.61}{7.9}=-2.99\ m/s^2

Emergency acceleration is 2.99 m/s² (magnitude)

6 0
3 years ago
If a series circuit contains a 12-V battery, a 6-ohm resistor, and a 4-ohm resistor, what is the current in the circuit?
Shalnov [3]

In a series circuit the total current is the same throughout resistors and so:

I_{total}=I_1=I_2

The voltage is distributed throughout the resistors and so:

V_{total}=V_1+V_2

and the total resistance can be calculated by adding up the resistors resistance:

R_{total}=R_1+R_2

First thing is to calculate the total resistance and so:

R_{total}=6\Omega + 4\Omega = 10\Omega

And by Omh's law V=IR we have:

V_{total}=I_{total}R_{total}\\\\I_{total}=\frac{V_{total}}{R_{total}}= \frac{12V}{10\Omega} =1.2A

And so the total current of the circuit is 1.2 amps i.e. 1.2 A.


6 0
3 years ago
Read 2 more answers
An electric field of magnitude 2.35 V/m is oriented at an angle of 25.0° with respect to the positive z-direction. Determine the
zzz [600]

Answer:

The magnitude of the electric flux is 3.53\ N-m^2/C

Explanation:

Given that,

Electric field = 2.35 V/m

Angle = 25.0°

Area A= 1.65 m^2

We need to calculate the flux

Using formula of the magnetic flux

\phi=E\cdot A

\phi = EA\cos\theta

Where,

A = area

E = electric field

Put the value into the formula

\phi=2.35\times1.65\times\cos 25^{\circ}

\phi=2.35\times1.65\times0.91

\phi=3.53\ N-m^2/C

Hence, The magnitude of the electric flux is 3.53\ N-m^2/C

8 0
3 years ago
When two objects with electrical charges interact, which affect the strength of that interaction?
noname [10]
The two objects with electrical charges interact, which affect the strength of that interaction <span>amount of charge. The answer is letter A. The rest of the choices do not answer the question above.</span> 
6 0
3 years ago
Other questions:
  • A 15.0 kg turntable with a radius of 25 cm is covered with a uniform layer of dry ice that has a mass of 9.0 kg. The angular spe
    8·1 answer
  • A 1.30 kg skateboard is coasting along the pavement at a speed of 6.64 m/s when a 0.680 kg cat drops from a tree vertically down
    5·1 answer
  • Three boxes in contact rest side-by-side on a smooth, horizontal floor. Their masses are 5.0-kg, 3.0-kg, and 2.0-kg, with the 3.
    10·1 answer
  • What is space time?​
    6·1 answer
  • What is the greenhouse effect?
    9·2 answers
  • Resistance training should be performed every day for maximum conditioning benefits.
    11·2 answers
  • The image of the lemon is at point I. What is the size of the image compared to the size of the lemon?
    8·2 answers
  • If the voltage and resistance in a circuit both double, what happens to the current? use ohm’s law to explain your answer.
    6·1 answer
  • 3. The figure below shows the motion of a car. It starts from the origin, O travels 8m
    9·1 answer
  • Which circuit would have the most electrical power?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!