Answer:
Explanation:
One of the major differences between nuclear reactions and chemical reactions is that nuclear reactions involve larger amount of energy than chemical energy. <u>This is because the force between the protons and neutrons in the nucleus of an atom is much higher than the force of attraction between electrons and the positively charged nucleus, hence nuclear reactions involves/requires a larger amount of energy (because it's reactions involve the nucleus) than chemical reactions (because it's reactions involve the electrons)</u>.
Thus, during nuclear fusion, two light nuclei are bombarded against one another to produce a larger/heavier nuclei with the release of large amount of energy (because the forces between the protons and neutrons are much higher) unlike when two atoms/molecules are chemically combined together to form a new molecule with the rearrangement of electrons in the valence shells of the participating molecules.
Answer:
because all objects fall at a rate of 9.8m/s²
Answer:
9.8 m/s
Explanation:
The work done by the force pushing the cart is equal to the kinetic energy gained by the cart:

where
W is the work done
is the final kinetic energy of the cart
is the initial kinetic energy of the cart, which is zero because the cart starts from rest, so we can write:

But the work is equal to the product between the pushing force F and the displacement, so

So, the final kinetic energy of the cart is 480 J. The formula for the kinetic energy is
(1)
where m is the mass of the cart and v its final speed.
We can find the mass because we know the weight of the cart, 98.0 N:

Therefore, we can now re-arrange eq.(1) to find the final speed of the cart:

Answer:
Light
Explanation:
The way a concave mirror works is that since it's concave, the light bounces off of each other. a convex mirror, it curved the opposite, and the mirror has no way to bounce off of itself.
Answer:
C. Influenced by the Sun's electromagnetic field
Explanation:
"Sunspots occur in pairs because each is one side of a loop of the Sun's magnetic field that reaches the Sun's surface. Solar prominences are the plasma loops that connect two sunspots."