You will use the Pythagorean Theorem to solve it.
c^2 = a^2 + b^2
c^2 = (1.5)^2 + (2)^2
c^2 = 6.25
c = square root of 6.25
c = 2.5
I hope this helps!
Answer:
9.43 m/s
Explanation:
First of all, we calculate the final kinetic energy of the car.
According to the work-energy theorem, the work done on the car is equal to its change in kinetic energy:

where
W = -36.733 J is the work done on the car (negative because the car is slowing down, so the work is done in the direction opposite to the motion of the car)
is the final kinetic energy
is the initial kinetic energy
Solving,

Now we can find the final speed of the car by using the formula for kinetic energy

where
m = 661 kg is the mass of the car
v is its final speed
Solving for v, we find

Answer:
C). Take your foot off the gas pedal. Then brake lightly until you are moving at low speed.
Explanation:
While driving on roads of rural areas, if our right wheel moves off the pavement, we should always hold the steering wheel firmly and then take our foot off the gas pedal, then apply brake lightly until we are moving at a low speed.
When our wheels drift off the pavement area, we should not panic and yank. And instead of turning the wheel back in the left direction towards the road, it is always safer to take off our foot from the gas pedal and then apply brakes slowly. When our vehicle slows down check the incoming traffic behind us and then we should slowly move back on to the pavement.
Answer;
D. ocean currents might change course.
Explanation;
Ocean currents are the directed movements of water in the ocean and can be caused by wind (for currents closer to the surface) and temperature, salinity, or density differences (currents deeper in the ocean). Ocean currents help to warm or cool certain parts of the earth by carrying warmer water northward or cooler water toward the equator.
Climate change can have a vast effect on ocean currents because of the change in temperature it causes, which results in change in ocean water temperatures and a subsequent distortion in current flow.