Answer:
The trigonometric form of the complex number is 12(cos 120° + i sin 120°)
Step-by-step explanation:
* Lets revise the complex number in Cartesian form and polar form
- The complex number in the Cartesian form is a + bi
-The complex number in the polar form is r(cosФ + i sinФ)
* Lets revise how we can find one from the other
- r² = a² + b²
- tanФ = b/a
* Now lets solve the problem
∵ z = -6 + i 6√3
∴ a = -6 and b = 6√3
∵ r² = a² + b²
∴ r² = (-6)² + (6√3)² = 36 + 108 = 144
∴ r = √144 = 12
∵ tan Ф° = b/a
∴ tan Ф = 6√3/-6 = -√3
∵ The x-coordinate of the point is negative
∵ The y-coordinate of the point is positive
∴ The point lies on the 2nd quadrant
* The measure of the angle in the 2nd quadrant is 180 - α, where
α is an acute angle
∵ tan α = √3
∴ α = tan^-1 √3 = 60°
∴ Ф = 180° - 60° = 120°
∴ z = 12(cos 120° + i sin 120°)
* The trigonometric form of the complex number is
12(cos 120° + i sin 120°)
12
Please go on my acc and help
75 ounces.
start by taking 1376.44-1235.55 to give a profit of 140.89 per ounce.
Then take 10566.75/140.89 to get 75 total ounces.
Answer:
(f • g)(x) = -6x² - 24x
Step-by-step explanation:
The expression (f • g)(x) can be written in an expanded form, f(x) • g(x).
(f • g)(x) <----- Original expression
f(x) • g(x) <----- Rewritten expression
(- 6 x) • (x + 4) <----- Insert functions
-6x² - 24x <----- Multiply -6x and x, and multiply -6x and 4
X =15
Then plug 15 for each x value