Answer:
y ≈ 2.5
Explanation:
Given data:
bottom width is 3 m
side slope is 1:2
discharge is 10 m^3/s
slope is 0.004
manning roughness coefficient is 0.015
manning equation is written as

where R is hydraulic radius
S = bed slope



P is perimeter 

![Q = (2+2y) y) \times 1/0.015 [\frac{(3+2y) y}{(3+2\sqrt{5} y)}]^{2/3} 0.004^{1/2}](https://tex.z-dn.net/?f=Q%20%3D%20%282%2B2y%29%20y%29%20%5Ctimes%201%2F0.015%20%5B%5Cfrac%7B%283%2B2y%29%20y%7D%7B%283%2B2%5Csqrt%7B5%7D%20y%29%7D%5D%5E%7B2%2F3%7D%200.004%5E%7B1%2F2%7D)
solving for y![100 =(2+2y) y) \times (1/0.015) [\frac{(3+2y) y}{(3+2\sqrt{5} y)}]^{2/3} \times 0.004^{1/2}](https://tex.z-dn.net/?f=100%20%3D%282%2B2y%29%20y%29%20%5Ctimes%20%281%2F0.015%29%20%5B%5Cfrac%7B%283%2B2y%29%20y%7D%7B%283%2B2%5Csqrt%7B5%7D%20y%29%7D%5D%5E%7B2%2F3%7D%20%5Ctimes%200.004%5E%7B1%2F2%7D)
solving for y value by using iteration method ,we get
y ≈ 2.5
Answer:
Yes
Explanation:
If the Ajax representative fails to correct the previous statement this can cause misrepresentation.
Answer:
a) v = +/- 0.323 m/s
b) x = -0.080134 m
c) v = +/- 1.004 m/s
Explanation:
Given:
a = - (0.1 + sin(x/b))
b = 0.8
v = 1 m/s @ x = 0
Find:
(a) the velocity of the particle when x = -1 m
(b) the position where the velocity is maximum
(c) the maximum velocity.
Solution:
- We will compute the velocity by integrating a by dt.
a = v*dv / dx = - (0.1 + sin(x/0.8))
- Separate variables:
v*dv = - (0.1 + sin(x/0.8)) . dx
-Integrate from v = 1 m/s @ x = 0:
0.5(v^2) = - (0.1x - 0.8cos(x/0.8)) - 0.8 + 0.5
0.5v^2 = 0.8cos(x/0.8) - 0.1x - 0.3
- Evaluate @ x = -1
0.5v^2 = 0.8 cos(-1/0.8) + 0.1 -0.3
v = sqrt (0.104516)
v = +/- 0.323 m/s
- v = v_max when a = 0:
-0.1 = sin(x/0.8)
x = -0.8*0.1002
x = -0.080134 m
- Hence,
v^2 = 1.6 cos(-0.080134/0.8) -0.6 -0.2*-0.080134
v = sqrt (0.504)
v = +/- 1.004 m/s