1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Fantom [35]
2 years ago
12

Hi all any one help me?? ​

Engineering
2 answers:
yanalaym [24]2 years ago
5 0

Answer:

Explanation:

sorry i dont know

Taya2010 [7]2 years ago
3 0
I just want ur points
You might be interested in
4.116 The lid of a roof scuttle weighs 75 lb. It is hinged at corners A and B and maintained in the desired position by a rod CD
babunello [35]

Answer:

(a) The magnitude of force is 116.6 lb, as exerted by the rod CD

(b) The reaction at A is (-72.7j-38.1k) lb and at B it is (37.5j) lb.

Explanation:

Step by step working is shown in the images attached herewith.

For this given system, the coordinates are the following:

A(0, 0, 0)

B(26, 0, 0)

And the value of angle alpha is 20.95°

Hope that answers the question, have a great day!

5 0
3 years ago
Air enters a cmpressor at 20 deg C and 80 kPa and exits at 800 kPa and 200 deg C. The power input is 400 kW. Find the heat trans
aksik [14]

Answer:

The heat is transferred is at the rate of 752.33 kW

Solution:

As per the question:

Temperature at inlet, T_{i} = 20^{\circ}C = 273 + 20 = 293 K

Temperature at the outlet, T_{o} = 200{\circ}C = 273 + 200 = 473 K

Pressure at inlet, P_{i} = 80 kPa = 80\times 10^{3} Pa

Pressure at outlet, P_{o} = 800 kPa = 800\times 10^{3} Pa

Speed at the outlet, v_{o} = 20 m/s

Diameter of the tube, D = 10 cm = 10\times 10^{- 2} m = 0.1 m

Input power, P_{i} = 400 kW = 400\times 10^{3} W

Now,

To calculate the heat transfer, Q, we make use of the steady flow eqn:

h_{i} + \frac{v_{i}^{2}}{2} + gH  + Q = h_{o} + \frac{v_{o}^{2}}{2} + gH' + p_{s}

where

h_{i} = specific enthalpy at inlet

h_{o} = specific enthalpy at outlet

v_{i} = air speed at inlet

p_{s} = specific power input

H and H' = Elevation of inlet and outlet

Now, if

v_{i} = 0 and H = H'

Then the above eqn reduces to:

h_{i} + gH + Q = h_{o} + \frac{v_{o}^{2}}{2} + gH + p_{s}

Q = h_{o} - h_{i} + \frac{v_{o}^{2}}{2} + p_{s}                (1)

Also,

p_{s} = \frac{P_{i}}{ mass, m}

Area of cross-section, A = \frac{\pi D^{2}}{4} =\frac{\pi 0.1^{2}}{4} = 7.85\times 10^{- 3} m^{2}

Specific Volume at outlet, V_{o} = A\times v_{o} = 7.85\times 10^{- 3}\times 20 = 0.157 m^{3}/s

From the eqn:

P_{o}V_{o} = mRT_{o}

m = \frac{800\times 10^{3}\times 0.157}{287\times 473} = 0.925 kg/s

Now,

p_{s} = \frac{400\times 10^{3}}{0.925} = 432.432 kJ/kg

Also,

\Delta h = h_{o} - h_{i} = c_{p}\Delta T =c_{p}(T_{o} - T_{i}) = 1.005(200 - 20) = 180.9 kJ/kg

Now, using these values in eqn (1):

Q = 180.9 + \frac{20^{2}}{2} + 432.432 = 813.33 kW

Now, rate of heat transfer, q:

q = mQ = 0.925\times 813.33 = 752.33 kW

4 0
2 years ago
A person is planning a bungee jump from a 40 meter high bridge. Under the bridge is a river with crocodiles, so the person does
Nonamiya [84]

Answer:

a. l = 19.7m, b. 18.55m, c. Impact Force = 3889.84 N

Explanation:

The total energy of the system when the person is at top of the bridge is

Potential energy = mgh, Kinetic energy = 0

The total energy of the  system when the person reaches just above the surface

Potential energy = 0, Kinetic energy = 0, Spring energy = ½ K X2, where k is the spring constant and X is the deflection

Applying conservation of energy

mgh = 0 + 0 + ½ K X²

80 x 9.81 x 40 = ½ (3600/l) X²

31392 = ½ (3600/l) X²

We can also conclude that

l+ X + 1.75 = 40

l + X = 38.25

a. <u>Substitute the value of x from above into the energy conversion expression</u>

31392 = ½ (3600/l)(38.25 - l)²

31392 x 2/3600 = (38.25 + l² – 2l(38.25))/l

17.44l = l2 – 76.5l + 38.25²

l² – 76.5l – 17.44l +1463.0625 = 0

Solving for l we get

L = 19.7

Hence, length of the rope is 19.7m

b. <u>The deflection is calculated by using the relation between l and X</u>

L + X = 38.25

X = 38.25 – 19.7 = 18.55m

c. <u>The impact force is calculated using the impact force formula which relates the impact force with the deflection</u>

F = KX

F = (3600/l) . X

F = (3600/19.7) . (18.55) = 3889.84 N

Thus, the impact force is 3889.84 N

3 0
3 years ago
Acertain foundation will experience a bearing capacity failurewhen it is subjected to a downward load of 2200 kN. Using ASD with
ehidna [41]

Answer:

Um...

Explanation:

This is what I like to see teachers giving out.

7 0
3 years ago
A polyethylene rod exactly 10 inches long with a cross-sectional area of 0.04 in2 is used to suspend a weight of 358 lbs-f (poun
Nadya [2.5K]

Answer:

Final length of the rod = 13.90 in

Explanation:

Cross Sectional Area of the polythene rod, A = 0.04 in²

Original length of the polythene rod, l = 10 inches

Tensile modulus for the polymer, E = 25,000 psi

Viscosity, \eta = 1*10^{9} psi -sec

Weight = 358 lbs - f

time, t = 1 hr = 3600 sec

Stress is given by:

\sigma = \frac{Force}{Area} \\\sigma = \frac{358}{0.04} \\\sigma = 8950 psi

Based on Maxwell's equation, the strain is given by:

strain = \sigma ( \frac{1}{E} + \frac{t}{\eta} )\\Strain = 8950 ( \frac{1}{25000} + \frac{3600}{10^{9} } )\\Strain = 0.39022

Strain = Extension/(original Length)

0.39022 = Extension/10

Extension = 0.39022 * 10

Extension = 3.9022 in

Extension = Final length - Original length

3.9022 =  Final length - 10

Final length = 10 + 3.9022

Final length = 13.9022 in

Final length = 13.90 in

7 0
3 years ago
Other questions:
  • According to the amortization table, Demarco and Tanya will pay a total of in interest over the life of their loan.
    6·2 answers
  • Air in a 10 ft3 cylinder is initially at a pressure of 10 atm and a temperature of 330 K. The cylinder is to be emptied by openi
    10·2 answers
  • Calculate the equivalent capacitance of the three series capacitors in Figure 12-1 A) 0.060 uF B) 0.8 uF C) 0.58 uF D) 0.01 uF
    12·1 answer
  • Write a function separatethem that will receive one input argument which is a structure containing fields named length and width
    8·1 answer
  • what is the expected life 1 inch diameter bar machined from AISI 1020 CD Steel is subjected to alternating bending stress betwee
    9·1 answer
  • Suppose the loop is moving toward the solenoid (to the right). Will current flow through the loop down the front, up the front,
    5·2 answers
  • Some_____
    10·1 answer
  • Explain how you would solve for total resistance in a parallel circuit versus a series circuit. How would you apply and solve fo
    10·1 answer
  • Pay attention to the following questions!
    14·1 answer
  • 3. (5%) you would like to physically separate different materials in a scrap recycling plant. describe at least one method that
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!