Answer:
<em>No, the velocity profile does not change in the flow direction.</em>
Explanation:
In a fluid flow in a circular pipe, the boundary layer thickness increases in the direction of flow, until it reaches the center of the pipe, and fill the whole pipe. If the density, and other properties of the fluid does not change either by heating or cooling of the pipe, <em>then the velocity profile downstream becomes fully developed, and constant, and does not change in the direction of flow.</em>
Answer:
q=2313.04
T=690.86°C
Explanation:
Given that
Thickness t= 20 cm
Thermal conductivity of firebrick= 1.6 W/m.K
Thermal conductivity of structural brick= 0.7 W/m.K
Inner temperature of firebrick=980°C
Outer temperature of structural brick =30°C
We know that thermal resistance
These are connect in series
Heat transfer
So heat flux
q=2313.04
Lets temperature between interface is T
Now by equating heat in both bricks
So T=690.86°C
Answer:
The radius of a wind turbine is 691.1 ft
The power generation potential (PGP) scales with speed at the rate of 7.73 kW.s/m
Explanation:
Given;
power generation potential (PGP) = 1000 kW
Wind speed = 5 mph = 2.2352 m/s
Density of air = 0.0796 lbm/ft³ = 1.275 kg/m³
Radius of the wind turbine r = ?
Wind energy per unit mass of air, e = E/m = 0.5 v² = (0.5)(2.2352)²
Wind energy per unit mass of air = 2.517 J/kg
PGP = mass flow rate * energy per unit mass
PGP = ρ*A*V*e
r = 210.64 m = 691.1 ft
Thus, the radius of a wind turbine is 691.1 ft
PGP = CVᵃ
For best design of wind turbine Betz limit (c) is taken between (0.35 - 0.45)
Let C = 0.4
PGP = Cvᵃ
take log of both sides
ln(PGP) = a*ln(CV)
a = ln(PGP)/ln(CV)
a = ln(1000)/ln(0.4 *2.2352) = 7.73
The power generation potential (PGP) scales with speed at the rate of 7.73 kW.s/m
Answer:
Check the explanation
Explanation:
Kindly check the attached images below to see the step by step explanation to the question above.
Answer:
What's your question?
Explanation:
I'm not able to understand it....
Sorry.