<h2>Answer:</h2>
<u>The right option is</u><u> (C) intermediate conductivity and a high melting point</u>
<h2>Explanation:</h2>
Metalloids usually look like metals but behave largely like nonmetals. Metalloids are shiny, brittle solids with intermediate good electrical conductivity. Their properties lie between metals and non metals. All metalloids exist as solids at room temperature and they have very high melting points. The physical properties of metalloids are more likely to be metallic, but their chemical properties tend to be non-metallic
(2) Arsenic. It is an element and elements are chemically the simplest units and cannot be broken down by any chemical change.
Answer:
C.
Explanation:
if I am wrong I am so sorry
<span>The atmosphere is a thin layer of gases that surrounds the Earth. It seals the planet and protects us from the vacuum of space. It protects us from electromagnetic radiation given off by the Sun and small objects flying through space such as meteoroids.</span><span>
So it's like a blanket protecting us but it has air hole/patches where sunlight can get through</span>
<span>Answer: option (1) solubility of the solution increases.
</span><span />
<span>Justification:
</span><span />
<span>The solubility of substances in a given solvent is temperature dependent.
</span><span />
<span>The most common behavior of the solubility of salts in water is that the solubiilty increases as the temperature increase.
</span><span />
<span>To predict with certainty the solubility at different temperatures you need the product solubility constants (Kps), which is a constant of equlibrium of the dissolution of a ionic compound slightly soluble in water, or a chart (usually experimental chart) showing the solubilities at different temperatures.
</span><span />
<span>KClO₃ is a highly soluble in water, so you do not work with Kps.
</span><span />
<span>You need the solubility chart or just assume that it has the normal behavior of the most common salts. You might know from ordinary experience that you can dissolve more sodium chloride (table salt) in water when the water is hot. That is the same with KClO₃.
</span><span>The solubility chart of KlO₃ is almost a straight line (slightly curved upward), with positive slope (ascending from left to right) meaning that the higher the temperature the more the amount of salt that can be dissolved.</span>