1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nirvana33 [79]
3 years ago
9

Explain some similarities and differences between: Magnetism and gravity.

Physics
2 answers:
AlekseyPX3 years ago
7 0

Answer:

Gravity attracts thing towards iself and magnet attracts mettalic things towards it self..

The force of gravity is equal everywhere but in magnets force of attraction is most near poles.

Gravity attracts everything towards it self but magnet only attracts mettalic objects.

Magnet could be temporarily made by passing electricity in any soft iron but gravity is natural can't be made..

svlad2 [7]3 years ago
4 0

Answer:

Gravity always attracts. Magnetism either attracts or repel. Gravity reacts to mass or space. Magnetism reacts to motion

You might be interested in
PLS ANSWER ASAP
lidiya [134]
3,728.2271 miles per hour please mark brainliest
8 0
3 years ago
A rocket takes off from Earth's surface, accelerating straight up at 47.2 m/s2. Calculate the normal force (in N) acting on an a
lions [1.4K]

Answer:

Approximately 4.61\times 10^{3}\; {\rm N} upwards (assuming that g = 9.81\; {\rm m\cdot s^{-2}}.)

Explanation:

External forces on this astronaut:

  • Weight (gravitational attraction) from the earth (downwards,) and
  • Normal force from the floor (upwards.)

Let (\text{normal force}) denote the magnitude of the normal force on this astronaut from the floor. Since the direction of the normal force is opposite to the direction of the gravitational attraction, the magnitude of the net force on this astronaut would be:

\begin{aligned}(\text{net force}) &= (\text{normal force}) - (\text{weight})\end{aligned}.

Let m denote the mass of this astronaut. The magnitude of the gravitational attraction on this astronaut would be (\text{weight}) = m\, g.

Let a denote the acceleration of this astronaut. The magnitude of the net force on this astronaut would be (\text{net force}) = m\, a.

Rearrange \begin{aligned}(\text{net force}) &= (\text{normal force}) - (\text{weight})\end{aligned} to obtain an expression for the magnitude of the normal force on this astronaut:

\begin{aligned}(\text{normal force}) &= (\text{net force}) + (\text{weight}) \\ &= m\, a + m\, g \\ &= m\, (a + g) \\ &= 80.9\; {\rm kg} \times (47.2\; {\rm m\cdot s^{-2}} + 9.81\; {\rm m\cdot s^{-2}}) \\ &\approx 4.61 \times 10^{3}\; {\rm N}\end{aligned}.

3 0
2 years ago
You place an ice cube of mass 7.50×10−3kg and temperature 0.00∘C on top of a copper cube of mass 0.540 kg. All of the ice melts,
lbvjy [14]

Answer:

The value is T_c  =  12 .1 ^oC

Explanation:

From the question we are told that

The mass of the ice cube is m_i  =  7.50 *10^{-3} \  kg

The temperature of the ice cube is T_i = 0^o C

The mass of the copper cube is m_c  =  0.540 \  kg

The final temperature of both substance is T_f  =  0^oC

Generally form the law of thermal energy conservation,

The heat lost by the copper cube = heat gained by the ice cube

Generally the heat lost by the copper cube is mathematically represented as

Q =  m_c  *  c_c *  [T_c  -  T_f ]

The specific heat of copper is c_c  = 385J/kg \cdot  ^oC

Generally the heat gained by the ice cube is mathematically represented as

Q_1 =  m_i * L

Here L is the latent heat of fusion of the ice with value L  =  3.34 * 10^{5} J/kg

So

Q_1 =  7.50 *10^{-3} * 3.34 * 10^{5}

=> Q_1 =  2505 \ J

So

2505  =  0.540  *  385 *  [T_c  - 0 ]

=>    T_c  =  12 .1 ^oC

4 0
3 years ago
Plzzzzz help me plzzz
yarga [219]
8 miles per hour

(extra space)
6 0
3 years ago
Read 2 more answers
Three identical charges q form an equilateral triangle of side a with two charges on the x-axis and one on the positive y-axis.
shusha [124]

Answer:

F_n = k*q*(\frac{2*(y + \frac{\sqrt{3}*a }{2}) }{((y+ \frac{\sqrt{3}*a }{2})^2 + (a/2)^2)^1.5 } +\frac{1}{y^2}  )

Explanation:

Given:

- Three identical charges q.

- Two charges on x - axis separated by distance a about origin

- One on y-axis

- All three charges are vertices

Find:

- Find an expression for the electric field at points on the y-axis above the uppermost charge.

- Show that the working reduces to point charge when y >> a.

Solution

- Take a variable distance y above the top most charge.

- Then compute the distance from charges on the axis to the variable distance y:

                                  r = \sqrt{(\frac{\sqrt{3}*a }{2} + y)^2 + (a/2)^2  }

- Then compute the angle that Force makes with the y axis:

                                 cos(Q) = sqrt(3)*a / 2*r

- The net force due to two charges on x-axis, the vertical components from these two charges are same and directed above:

                                 F_1,2 = 2*F_x*cos(Q)

- The total net force would be:

                                F_net = F_1,2 + kq / y^2

- Hence,

                                F_n = k*q*(\frac{2*(y + \frac{\sqrt{3}*a }{2}) }{((y+ \frac{\sqrt{3}*a }{2})^2 + (a/2)^2)^1.5 } +\frac{1}{y^2}  )

- Now for the limit y >>a:

                              F_n = k*q*(\frac{2*y(1 + \frac{\sqrt{3}*a }{2*y}) }{y^3((1+ \frac{\sqrt{3}*a }{2*y})^2 + (a/y*2)^2)^1.5 }) +\frac{1}{y^2}  )

- Insert limit i.e a/y = 0

                              F_n = k*q*(\frac{2}{y^2} +\frac{1}{y^2})  \\\\F_n = 3*k*q/y^2

Hence the Electric Field is off a point charge of magnitude 3q.

8 0
4 years ago
Other questions:
  • according to many anthropologists a land brigade during the ice age allowing between which two countries
    11·2 answers
  • What Gestalt principle illustrates our tendency to group items together based on how close they are to each other?
    15·2 answers
  • A neuron that is activated when a mosquito lands on your arm
    5·1 answer
  • How does south African law ensure that people who are living with HIV/AIDS are not discriminated against
    11·1 answer
  • An electric resistance heater is embedded in a long cylinder of diameter 30 mm. when water with a temperature of 25°c and veloc
    8·1 answer
  • What's the speed of a sound wave through water at 25 Celsius
    9·1 answer
  • Paco was driving his scooter west with an initial velocity of 4 m/s. He accelerates at 0.5 m/s2 for 30 seconds.
    12·2 answers
  • What happens to momentum during a collision?...i give brainliest
    9·1 answer
  • How can the pilot determine, for an ILS runway equipped with MALSR, that there may be a penetration of the obstacle identificati
    12·1 answer
  • Need help in showing how to get the final velocity​
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!